分类
代码地址以及相关操作:(https://github.com/charlesq34/pointnet)
分类比较简单,按照网上的步骤很少会出问题,github上边也比较详细,就不具体说明了。
分割
我在运行分割时遇到两个问题
第一:找不到文件夹
FileNotFoundError: [Errno 2] No such file or directory: '/home/l/Desktop/pointnet-master/part_seg/./PartAnnotation/03001627/points/355fa0f35b61fdd7aa74a6b5ee13e775.pts'
这个因为数据集下载的时候出错了,一共两个数据集,如果运行 sh download_data.sh
下载不下来,可以通过链接下载好,在去运行程序,
train.py运行效果如下:
<<< Testing on the test dataset ...
Loading test file /home/l/Desktop/pointnet-master/part_seg/./hdf5_data/ply_data_val0.h5
Testing Total Mean_loss: 14097378435.845493
Testing Label Mean_loss: 528065397.047210
Testing Label Accuracy: 0.211373
Testing Seg Mean_loss: 14097378435.845493
Testing Seg Accuracy: 0.016106
Category Airplane Object Number: 389
Category Airplane Label Accuracy: 1.000000
Category Airplane Seg Accuracy: 0.000000
Category Bag Object Number: 8
Category Bag Label Accuracy: 0.000000
Category Bag Seg Accuracy: 0.000000
Category Cap Object Number: 5
Category Cap Label Accuracy: 0.000000
Category Cap Seg Accuracy: 0.000000
Category Car Object Number: 79
Category Car Label Accuracy: 0.000000
Category Car Seg Accuracy: 0.000000
Category Chair Object Number: 395
Category Chair Label Accuracy: 0.000000
Category Chair Seg Accuracy: 0.000000
Category Earphone Object Number: 6
Category Earphone Label Accuracy: 0.000000
Category Earphone Seg Accuracy: 0.000000
Category Guitar Object Number: 78
Category Guitar Label Accuracy: 0.000000
Category Guitar Seg Accuracy: 0.000000
Category Knife Object Number: 35
Category Knife Label Accuracy: 0.000000
Category Knife Seg Accuracy: 0.000000
Category Lamp Object Num

本文档介绍了PointNet在分类和分割任务中的代码复现过程。在分类部分,提供了代码地址和简单说明。在分割部分,提到了在数据集下载和运行时遇到的问题及解决方法,包括修改batch_size以避免资源耗尽。运行test.py后,将生成多个obj文件,可通过CloudCompare软件查看分割结果。
最低0.47元/天 解锁文章
6627





