逻辑回归问题中的代价函数为:
J=−1m∑i=1m[y(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]J=-\frac{1}{m}\sum\limits_{i=1}^{m}{[y^{(i)}logh_\mathbf{\theta}(\mathbf{x}^{(i)})+(1-y^{(i)})log(1-h_\mathbf{\theta}(\mathbf{x}^{(i)}))]}J=−m1i=1∑m[y(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))],其中,hθ(x)=g(θTx), g(z)=11+e−zh_\theta(x)=g(\mathbf{\theta}^T\mathbf{x}), g(z)=\frac{1}{1+e^{-z}}hθ(x)=g(θTx), g(z)=1+e−z1。
其关于参数θ\mathbf{\theta}θ的偏导数为:
∂J∂θ=1m∑i=1m[hθ(x(i))−y(i)]x(i)\frac{\partial{J}}{\partial{\mathbf{\theta}}}=\frac{1}{m}\sum\limits_{i=1}^{m}{[h_{\mathbf{\theta}}(\mathbf{x}^{(i)})-y^{(i)}]\mathbf{x}^{(i)}}∂θ∂J=m1i=1∑m[hθ(x(i))−y(i)]x(i)
下面介绍一下偏导数推导过程:
偏导数推导的原理是链式法则,即:若有y=f(g(x))y=f(g(x))y=f(g(x)),则有∂y∂x=∂f∂g⋅∂g∂x\frac{\partial{y}}{\partial{x}}=\frac{\partial{f}}{\partial{g}}\cdot{\frac{\partial{g}}{\partial{x}}}∂x∂y=∂g∂f⋅∂x∂g。
运用链式法则,有
∂J∂θ=∂J∂h∂h∂g∂g∂θ\frac{\partial{J}}{\partial{\mathbf{\theta}}}=\frac{\partial{J}}{\partial{h}}\frac{\partial{h}}{\partial{g}}\frac{\partial{g}}{\partial{\mathbf{\theta}}}∂θ∂J=∂h∂J∂g∂h
逻辑回归中偏导数的推导详解
最新推荐文章于 2024-03-18 23:13:10 发布