Principal Component Analysis(PCA) in C#之了解 调用程序包

本博客介绍如何在C#中使用Principal Component Analysis (PCA)进行数据降维,并利用Support Vector Machine (SVM)进行分类预测。通过具体实例展示了输入数据的处理,SVM模型的训练及预测过程,同时提供了可视化结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Principal Component Analysis in C#Geting Started
这篇博客在前面2篇的基础上做
1.添加链接描述
2.添加链接描述

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Accord.Controls;
using Accord.MachineLearning.VectorMachines.Learning;
using Accord.Math.Optimization.Losses;
using Accord.Statistics;
using Accord.Statistics.Kernels;

namespace ConsoleApp1
{
    class Program
    {
      //  [MTAThread]
        static void Main(string[] args)
        {
            double[][] inputs =
            {
                /* 1.*/ new double[] { 0, 0 },
                /* 2.*/ new double[] { 1, 0 }, 
                /* 3.*/ new double[] { 0, 1 }, 
                /* 4.*/ new double[] { 1, 1 },
            };
            int[] outputs =
           { 
                /* 1. 0 xor 0 = 0: */ 0,
                /* 2. 1 xor 0 = 1: */ 1,
                /* 3. 0 xor 1 = 1: */ 1,
                /* 4. 1 xor 1 = 0: */ 0,
            };
            var smo = new SequentialMinimalOptimization<Gaussian>()
            {
                Complexity = 100 // Create a hard-margin SVM 
            };
            // Use the algorithm to learn the svm
            var svm = smo.Learn(inputs, outputs);

            // Compute the machine's answers for the given inputs
            bool[] prediction = svm.Decide(inputs);
            // Compute the classification error between the expected 
            // values and the values actually predicted by the machine:
            double error = new AccuracyLoss(outputs).Loss(prediction);

            Console.WriteLine("Error: " + error);

            // Show results on screen 
            ScatterplotBox.Show("Training data", inputs, outputs);
            ScatterplotBox.Show("SVM results", inputs, prediction.ToZeroOne());

            Console.ReadKey();
        }
    }
}

在这里插入图片描述

This article is designed to be the first in several to explain the use of the EMGU image processing wrapper. For more information on the EMGU wrapper please visit the EMGU website . If you are new to this wrapper see the Creating Your First EMGU Image Processing Project article. You may start with 3 warnings for the references not being found. Expand the References folder within the solution explorer delete the 3 with yellow warning icons and Add fresh references to them located within the Lib folder. If you have used this wrapper before please feel free to browse other examples on the EMGU Code Reference page Face Recognition has always been a popular subject for image processing and this article builds upon the work by Sergio Andrés Gutiérrez Rojas and his original article here[^]. The reason that face recognition is so popular is not only it’s real world application but also the common use of principal component analysis (PCA). PCA is an ideal method for recognizing statistical patterns in data. The popularity of face recognition is the fact a user can apply a method easily and see if it is working without needing to know to much about how the process is working. This article will look into PCA analysis and its application in more detail while discussing the use of parallel processing and the future of it in image analysis. The source code makes some key improvements over the original source both in usability and the way it trains and the use of parallel architecture for multiple face recognition.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值