# -*- coding: utf-8 -*-
# @Time : 2022/6/29 15:24
# @Author : xlf
# @File : test.py
import pandas as pd
from matplotlib import pyplot as plt
from sklearn import manifold, datasets
plt.rc('font', family='Times New Roman', size=16)
# 读取数据
cnn_lstm = pd.read_excel('analyse_data/csv/cnn_lstm.xlsx')
cnn_gru = pd.read_excel('analyse_data/csv/cnn_gru.xlsx')
cnn_bilstm = pd.read_excel('analyse_data/csv/cnn_bilstm.xlsx')
cnn_bigru = pd.read_excel('analyse_data/csv/cnn_bigru.xlsx')
# 提取数据
epoch_list = list(range(501))
# 提取准确度数据
cnn_lstm_accuracy = cnn_lstm.cnn_lstm_accuracy.tolist()
cnn_gru_accuracy = cnn_gru.cnn_gru_accuracy.tolist()
cnn_bilstm_accuracy = cnn_bilstm.cnn_bilstm_accuracy.tolist()
cnn_bigru_accuracy = cnn_bigru.cnn_bigru_accuracy.tolist()
# 提取损失值数据
cnn_lstm_loss = cnn_lstm.cnn_lstm_loss.tolist()
cnn_gru_loss = cnn_gru.cnn_gru_loss.tolist()
cnn_bilstm_loss
绘制不同模型的准确率和损失函数对比图
于 2024-02-27 17:40:20 首次发布