第三章 电商分析之会员活跃度

电商分析之会员活跃度

第 1 节 需求分析

会员数据是后期营销的很重要的数据。网店会专门针对会员进行一系列营销活动。

电商会员一般门槛较低,注册网站即可加入。有些电商平台的高级会员具有时效性,需要购买VIP会员卡或一年内消费额达到多少才能成为高级会员。

 

计算指标:

新增会员:每日新增会员数

活跃会员:每日,每周,每月的活跃会员数

会员留存:1日,2日,3日会员留存数、1日,2日,3日会员留存率

 

指标口径业务逻辑:

会员:以设备为判断标准,每个独立设备认为是一个会员。Android系统通常根据IMEI号,IOS系统通常根据OpenUDID来标识一个独立会员,每部移动设备是一个会员;

活跃会员:打开应用的会员即为活跃会员,暂不考虑用户的实际使用情况。一台设备每天多次打开计算为一个活跃会员。在自然周内启动过应用的会员为周活跃会员,同理还有月活跃会员;

会员活跃率:一天内活跃会员数与总会员数的比率是日活跃率;还有周活跃率(自 然周)、月活跃率(自然月);

新增会员:第一次使用应用的用户,定义为新增会员;卸载再次安装的设备,不会被算作一次新增。新增用户包括日新增会员、周(自然周)新增会员、月(自然 月)新增会员;

留存会员与留存率:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;这部分会员占当时新增会员的比例为留存率。

已知条件: 
1、明确了需求
2、输入:启动日志(OK)、事件日志 
3、输出:新增会员、活跃会员、留存会员 
4、日志文件、ODS、DWD、DWS、ADS(输出)
下一步做什么?
数据采集:日志文件 => Flume => HDFS => ODS

第 2 节 日志数据采集

原始日志数据(一条启动日志)

2020-07-30 14:18:47.339 [main] INFO com.lagou.ecommerce.AppStart - {"app_active":{"name":"app_active","json":{"entry":"1","action":"1","error_code":"0"},"time":1596111888529} ,"attr":{"area":"泰 安","uid":"2F10092A9","app_v":"1.1.13","event_type":"common","dev ice_id":"1FB872- 9A1009","os_type":"4.7.3","channel":"DK","language":"chinese","br and":"iphone-9"}}

数据采集的流程:

image.png

选择Flume作为采集日志数据的工具:

  • Flume 1.6
    • 无论是Spooling Directory Source、Exec Source均不能很好的满足动态实时收集的需求
  • Flume 1.8+
    • 提供了一个非常好用的 Taildir Source
    • 使用该source,可以监控多个目录,对目录中新写入的数据进行实时采集

2.1、taildir source配置

taildir Source的特点:

  • 使用正则表达式匹配目录中的文件名
  • 监控的文件中,一旦有数据写入,Flume就会将信息写入到指定的Sink
  • 高可靠,不会丢失数据不会对跟踪文件有任何处理,不会重命名也不会删除
  • 不支持Windows,不能读二进制文件。支持按行读取文本文件

 

taildir source配置

a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
  • positionFile

配置检查点文件的路径,检查点文件会以 json 格式保存已经读取文件的位置,解决断点续传的问题

  • filegroups

指定filegroups,可以有多个,以空格分隔(taildir source可同时监控多个目录中的文件)

  • filegroups.

配置每个filegroup的文件绝对路径,文件名可以用正则表达式匹配

2.2、hdfs sink配置

a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path =/user/data/logs/start/%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = startlog.


# 配置文件滚动方式(文件大小32M) 
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1


# 向hdfs上刷新的event的个数 
a1.sinks.k1.hdfs.batchSize = 100


# 使用本地时间 
a1.sinks.k1.hdfs.useLocalTimeStamp = true

HDFS Sink 都会采用滚动生成文件的方式,滚动生成文件的策略有:

  • 基于时间。hdfs.rollInterval 30秒
  • 基于文件大小。hdfs.rollSize 1024字节
  • 基于event数量。hdfs.rollCount 10个event
  • 基于文件空闲时间。hdfs.idleTimeout 0
  • minBlockReplicas。默认值与 hdfs 副本数一致。设为1是为了让 Flume 感知不到hdfs的块复制,此时其他的滚动方式配置(时间间隔、文件大小、events数量)才不会受影响

2.3、Agent的配置

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log

# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000

# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/start/%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = startlog
a1.sinks.k1.hdfs.fileType = DataStream
# 配置文件滚动方式(文件大小32M) 
a1.sinks.k1.hdfs.rollSize = 33554432 
a1.sinks.k1.hdfs.rollCount = 0 
a1.sinks.k1.hdfs.rollInterval = 0 
a1.sinks.k1.hdfs.idleTimeout = 0 
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数 
a1.sinks.k1.hdfs.batchSize = 1000
# 使用本地时间 
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

/data/lagoudw/conf/flume-log2hdfs.conf

2.4、Flume的优化配置

1、启动agent

flume-ng agent --conf-file /data/lagoudw/conf/flume-log2hdfs1.conf -name a1 -Dflume.roog.logger=INFO,console

2、向 /data/lagoudw/logs/ 目录中放入日志文件

报错: java.lang.OutOfMemoryError: GC overhead limit exceeded

image.png

缺省情况下 Flume jvm堆最大分配20m,这个值太小,需要调整。

3、解决方案:在 $FLUME_HOME/conf/flume-env.sh 中增加以下内容

export JAVA_OPTS="-Xms4000m -Xmx4000m -Dcom.sun.management.jmxremote"
# 要想使配置文件生效,还要在命令行中指定配置文件目录
flume-ng agent --conf /opt/apps/flume-1.9/conf --conf-file /data/lagoudw/conf/flume-log2hdfs1.conf -name a1 - Dflume.roog.logger=INFO,console
  • Flume内存参数设置及优化: 根据日志数据量的大小,Jvm堆一般要设置为4G或更高
  • -Xms -Xmx 最好设置一致,减少内存抖动带来的性能影响

存在的问题:Flume放数据时,使用本地时间;不理会日志的时间戳

2.5、自定义拦截器

前面 Flume Agent 的配置使用了本地时间,可能导致数据存放的路径不正确。

要解决以上问题需要使用自定义拦截器。

agent用于测试自定义拦截器。netcat source =>logger sink

# a1是agent的名称。source、channel、sink的名称分别为:r1 c1 k1 
a1.sources = r1
a1.channels = c1
a1.sinks = k1

# source
a1.sources.r1.type = netcat
a1.sources.r1.bind = linux122
a1.sources.r1.port = 9999
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = cn.lagou.dw.flume.interceptor.CustomerInterceptor$Builder

# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100

# sink
a1.sinks.k1.type = logger

# source、channel、sink之间的关系 
a1.sources.r1.channels = c1 
a1.sinks.k1.channel = c1

自定义拦截器的原理:

1、自定义拦截器要集成Flume 的 Interceptor

2、Event 分为header 和 body(接收的字符串)

3、获取header和body

4、从body中获取"time":1596382570539,并将时间戳转换为字符串 "yyyy-MM- dd"

5、将转换后的字符串放置header中

 

自定义拦截器的实现:

1、获取 event 的 header

2、获取 event 的 body

3、解析body获取json串

4、解析json串获取时间戳

5、将时间戳转换为字符串 "yyyy-MM-dd"

6、将转换后的字符串放置header中

7、返回event

<properties>
  	<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<dependencies>
  <dependency>
    <groupId>org.apache.flume</groupId>
    <artifactId>flume-ng-core</artifactId>
    <version>1.9.0</version>
    <scope>provided</scope>
  </dependency>
  
  <dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>1.1.23</version>
  </dependency>
</dependencies>

<build>
  <plugins>
    <plugin>
      <artifactId>maven-compiler-plugin</artifactId>
      <version>2.3.2</version>
      <configuration>
        <source>1.8</source>
        <target>1.8</target>
      </configuration>
    </plugin>
    
    <plugin>
      <artifactId>maven-assembly-plugin</artifactId>
      <configuration>
        <descriptorRefs>
          <descriptorRef>jar-with-dependencies</descriptorRef>
        </descriptorRefs>
      </configuration>
      <executions>
        <execution>
          <id>make-assembly</id>
          <phase>package</phase>
          <goals>
            <goal>single</goal>
          </goals>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>
package cn.lagou.dw.flume.interceptor;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.google.common.base.Strings;
import org.apache.commons.compress.utils.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.event.SimpleEvent;
import org.apache.flume.interceptor.Interceptor;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class CustomerInterceptor implements Interceptor {
    private static DateTimeFormatter formatter =
            DateTimeFormatter.ofPattern("yyyy-MM-dd");
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {
        String eventbody = new String(event.getBody(), Charsets.UTF_8);
        Map<String, String> headerMap = event.getHeaders();
        String[] bodyArr = eventbody.split("\\s+");

        try {
            String jsonStr = bodyArr[6];
            if (Strings.isNullOrEmpty(jsonStr)) {
                return null;
            }
            JSONObject jsonObject = JSON.parseObject(jsonStr).getJSONObject("app_active");
            String timestampStr = jsonObject.getString("time");
            // 将 timestamp 转为 时间日期类型(格式:yyyy-MM-dd)
            long timeStamp = Long.parseLong(timestampStr);
            String date = formatter.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(timeStamp), ZoneId.systemDefault()));
            headerMap.put("logtime", date);
            event.setHeaders(headerMap);
        } catch (Exception e) {
            headerMap.put("logtime", "unknown");
            event.setHeaders(headerMap);
        }
        return event;
    }

    @Override
    public List<Event> intercept(List<Event> events) {
        List<Event> out = new ArrayList<>();
        for(Event event : events) {
            Event outEvent = intercept(event);
            if (outEvent != null) {
                out.add(outEvent);
            }
        }
        return out;
    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder {
        @Override
        public Interceptor build() {
            return new CustomerInterceptor();
        }

        @Override
        public void configure(Context context) {
        }
    }
}

将程序打包,放在 flume/lib目录下;

启动Agent测试

flume-ng agent --conf /opt/lagou/servers/flume-1.9.0/conf/ --conf-file /root/data/lagoudw/conf/flumetest1.conf -name a1 -Dflume.root.logger=INFO,console

2.6、采集启动日志(使用自定义拦截器)

1、定义配置文件

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = cn.lagou.dw.flume.interceptor.CustomerInterceptor$Builder

# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000

# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/start/dt=%{logtime}/
a1.sinks.k1.hdfs.filePrefix = startlog.
a1.sinks.k1.hdfs.fileType = DataStream

# 配置文件滚动方式(文件大小32M) 
a1.sinks.k1.hdfs.rollSize = 33554432 
a1.sinks.k1.hdfs.rollCount = 0 
a1.sinks.k1.hdfs.rollInterval = 0 
a1.sinks.k1.hdfs.idleTimeout = 0 
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数 
a1.sinks.k1.hdfs.batchSize = 1000
v
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

修改:

  • 给source增加自定义拦截器
  • 去掉本地时间戳 a1.sinks.k1.hdfs.useLocalTimeStamp = true
  • 根据header中的logtime写文件

2、启动服务

# 测试
flume-ng agent --conf /opt/lagou/servers/flume-1.9.0/conf/ --conf-file /root/data/lagoudw/conf/flume-log2hdfs2.conf -name a1 -Dflume.root.logger=INFO,consolet.logger=INFO,console

3、拷贝日志 

4、检查HDFS文件

2.7、采集启动日志和事件日志

本系统中要采集两种日志:启动日志、事件日志,不同的日志放置在不同的目录下。要想一次拿到全部日志需要监控多个目录。

image.png

总体思路

1、taildir监控多个目录

2、修改自定义拦截器,不同来源的数据加上不同标志

3、hdfs sink 根据标志写文件

 

Agent配置

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1 f2
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
a1.sources.r1.headers.f1.logtype = start
a1.sources.r1.filegroups.f2 = /root/data/lagoudw/logs/event/.*log
a1.sources.r1.headers.f2.logtype = event

# 自定义拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = cn.lagou.dw.flume.interceptor.LogTypeInterceptor$Builder


# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000

# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/%{logtype}/dt=%{logtime}/
a1.sinks.k1.hdfs.filePrefix = %{logtype}log
a1.sinks.k1.hdfs.fileType = DataStream

# 配置文件滚动方式(文件大小32M) 
a1.sinks.k1.hdfs.rollSize = 33554432 
a1.sinks.k1.hdfs.rollCount = 0 
a1.sinks.k1.hdfs.rollInterval = 0 
a1.sinks.k1.hdfs.idleTimeout = 0 
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数 
a1.sinks.k1.hdfs.batchSize = 1000
# 使用本地时间
# a1.sinks.k1.hdfs.useLocalTimeStamp = true
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
  • filegroups

指定filegroups,可以有多个,以空格分隔(taildir source可同时监控多个目录中的文件)

  • headers.<filegroupName>.<headerKey>

给event增加header key。不同的filegroup,可配置不同的value

 

自定义拦截器

编码完成后打包上传服务器,放置在$FLUME_HOME/lib 下

package cn.lagou.dw.flume.interceptor;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.google.common.base.Strings;
import org.apache.commons.compress.utils.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class LogTypeInterceptor implements Interceptor {
    private static DateTimeFormatter formatter =
            DateTimeFormatter.ofPattern("yyyy-MM-dd");
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {
        String eventbody = new String(event.getBody(), Charsets.UTF_8);
        Map<String, String> headerMap = event.getHeaders();
        String[] bodyArr = eventbody.split("\\s+");

        try {
            String jsonStr = bodyArr[6];
            if (Strings.isNullOrEmpty(jsonStr)) {
                return null;
            }

            String timestampStr = "";
            JSONObject jsonObject = JSON.parseObject(jsonStr);
            if (headerMap.getOrDefault("logtype", "").equals("start")){
                // 取启动日志的时间戳
                timestampStr = jsonObject.getJSONObject("app_active").getString("time");
            } else if (headerMap.getOrDefault("logtype","").equals("event")) {
                // 取事件日志第一条记录的时间戳
                JSONArray jsonArray = jsonObject.getJSONArray("lagou_event");
                if (jsonArray.size() > 0){
                    timestampStr = jsonArray.getJSONObject(0).getString("time");
                }
            }

            // 将 timestamp 转为 时间日期类型(格式:yyyy-MM-dd)
            long timeStamp = Long.parseLong(timestampStr);
            String date = formatter.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(timeStamp), ZoneId.systemDefault()));
            headerMap.put("logtime", date);
            event.setHeaders(headerMap);
        } catch (Exception e) {
            headerMap.put("logtime", "unknown");
            event.setHeaders(headerMap);
        }
        return event;
    }

    @Override
    public List<Event> intercept(List<Event> events) {
        List<Event> out = new ArrayList<>();
        for(Event event : events) {
            Event outEvent = intercept(event);
            if (outEvent != null) {
                out.add(outEvent);
            }
        }
        return out;
    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder {
        @Override
        public Interceptor build() {
            return new LogTypeInterceptor();
        }

        @Override
        public void configure(Context context) {
        }
    }


    @Test
    public void testJunit(){

        String str = new String("2020-08-20 12:00:58.400 [main] INFO  com.lagou.ecommerce.AppEvent - {\"lagou_event\":[{\"name\":\"goods_detail_loading\",\"json\":{\"entry\":\"3\",\"goodsid\":\"0\",\"loading_time\":\"100\",\"action\":\"3\",\"staytime\":\"34\",\"showtype\":\"4\"},\"time\":1595340530671},{\"name\":\"praise\",\"json\":{\"id\":4,\"type\":2,\"add_time\":\"1597827924588\",\"userid\":5,\"target\":9},\"time\":1595301323236}],\"attr\":{\"area\":\"文登\",\"uid\":\"2F10092A1\",\"app_v\":\"1.1.9\",\"event_type\":\"common\",\"device_id\":\"1FB872-9A1001\",\"os_type\":\"0.93\",\"channel\":\"BB\",\"language\":\"chinese\",\"brand\":\"xiaomi-9\"}}");
        Map<String,String> map = new HashMap<>();

        Event event = new SimpleEvent();
        map.put("logtype","event");
        event.setHeaders(map);
        event.setBody(str.getBytes(Charsets.UTF_8));


        LogTypeInterceptor customerInterceptor = new LogTypeInterceptor();
        Event outEvent = customerInterceptor.intercept(event);

        Map<String, String> headers = outEvent.getHeaders();
        System.out.println(JSON.toJSONString(headers));



    }

}

测试

启动Agent,拷贝日志,检查HDFS文件

# 清理环境
rm -f /data/lagoudw/conf/startlog_position.json
rm -f /data/lagoudw/logs/start/*.log
rm -f /data/lagoudw/logs/event/*.log

# 启动 Agent
flume-ng agent --conf /opt/lagou/servers/flume-1.9.0/conf/ --conf-file /root/data/lagoudw/conf/flume-log2hdfs3.conf -name a1 -Dflume.root.logger=INFO,console
# 拷贝日志
cd /data/lagoudw/logs/source cp event0802.log ../event/ cp start0802.log ../start/

# 检查HDFS文件
hdfs dfs -ls /user/data/logs/event hdfs dfs -ls /user/data/logs/start

# 生产环境中用以下方式启动Agent
nohup flume-ng agent --conf /opt/apps/flume-1.9/conf --conf-file /data/lagoudw/conf/flume-log2hdfs3.conf -name a1 - Dflume.root.logger=INFO,LOGFILE > /dev/null 2>&1 &
  • nohup,该命令允许用户退出帐户/关闭终端之后继续运行相应的进程
  • /dev/null,代表linux的空设备文件,所有往这个文件里面写入的内容都会丢失,俗称黑洞
  • 标准输入0,从键盘获得输入 /proc/self/fd/0
  • 标准输出1,输出到屏幕(控制台) /proc/self/fd/1
  • 错误输出2,输出到屏幕(控制台) /proc/self/fd/2
  • >/dev/null 标准输出1重定向到 /dev/null 中,此时标准输出不存在,没有任何地方能够找到输出的内容
  • 2>&1 错误输出将会和标准输出输出到同一个地方
  • >/dev/null 2>&1 不会输出任何信息到控制台,也不会有任何信息输出到文件中

2.8 日志数据采集小结

  • 使用taildir source 监控指定的多个目录,可以给不同目录的日志加上不同header
  • 在每个目录中可以使用正则匹配多个文件
  • 使用自定义拦截器,主要功能是从json串中获取时间戳,加到event的header中
  • hdfs sink使用event header中的信息写数据(控制写文件的位置)
  • hdfs文件的滚动方式(基于文件大小、基于event数量、基于时间)
  • 调节flume jvm内存的分配

第 3 节 ODS建表和数据加载

image.png

ODS层的数据与源数据的格式基本相同。

创建ODS层表:

use ODS;
create external table ods.ods_start_log( `str` string)
comment '用户启动日志信息'
partitioned by (`dt` string)
location '/user/data/logs/start';

-- 加载数据的功能(测试时使用)
alter table ods.ods_start_log add partition(dt='2020-08-02'); 
alter table ods.ods_start_log drop partition (dt='2020-08-02');

加载启动日志数据:

script/member_active/ods_load_log.sh

可以传参数确定日志,如果没有传参使用昨天日期

#!/bin/bash
APP=ODS
hive=/opt/lagou/servers/hive-2.3.7/bin/hive

# 可以输入日期;如果未输入日期取昨天的时间 
if [ -n "$1" ]
then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
sql="
alter table "$APP".ods_start_log add partition(dt='$do_date'); "
$hive -e "$sql"

第 4 节 json数据处理

数据文件中每行必须是一个完整的 json 串,一个 json串不能跨越多行。

Hive 处理json数据总体来说有三个办法:

  • 使用内建的函数get_json_object、json_tuple
  • 使用自定义的UDF
  • 第三方的SerDe

4.1、使用内建函数处理

get_json_object(string json_string, string path)

返回值:String

说明:解析json字符串json_string,返回path指定的内容;如果输入的json字符串无效,那么返回NUll;函数每次只能返回一个数据项;

json_tuple(jsonStr, k1, k2, ...)

返回值:所有的输入参数、输出参数都是String;

说明:参数为一组键k1,k2,。。。。。和json字符串,返回值的元组。该方法比 get_json_object高效,因此可以在一次调用中输入多个键;

explode,使用explod将Hive一行中复杂的 array 或 map 结构拆分成多行。

测试数据:

user1;18;male;{"id": 1,"ids": [101,102,103],"total_number": 3}
user2;20;female;{"id": 2,"ids": [201,202,203,204],"total_number":4}
user3;23;male;{"id": 3,"ids":[301,302,303,304,305],"total_number": 5}
user4;17;male;{"id": 4,"ids": [401,402,403,304],"total_number":5}
user5;35;female;{"id": 5,"ids": [501,502,503],"total_number": 3}

建表加载数据:

CREATE TABLE IF NOT EXISTS jsont1(
  username string,
  age int,
  sex string,
  json string
)
row format delimited fields terminated by ';';
load data local inpath '/root/data/lagoudw/test/weibo.json' overwrite into table jsont1;

json的处理:

-- get 单层值
select username, age, sex, 
get_json_object(json, "$.id") id, 
get_json_object(json, "$.ids") ids, 
get_json_object(json, "$.total_number") num
from jsont1;

-- get 数组
select username, age, sex, 
  get_json_object(json, "$.id") id, 
  get_json_object(json, "$.ids[0]") ids0, 
  get_json_object(json, "$.ids[1]") ids1, 
  get_json_object(json, "$.ids[2]") ids2, 
  get_json_object(json, "$.ids[3]") ids3,
  get_json_object(json, "$.total_number") num
from jsont1;

-- 使用 json_tuple 一次处理多个字段
select json_tuple(json, 'id', 'ids', 'total_number')
from jsont1;

-- 有语法错误,只能单独处理json串。
select username, age, sex, json_tuple(json, 'id', 'ids', 'total_number')
from jsont1;


-- 使用 explode + lateral view
-- 在上一步的基础上,再将数据展开
-- 第一步,将 [101,102,103] 中的 [ ] 替换掉
-- select "[101,102,103]"
-- select "101,102,103"

select regexp_replace("[101,102,103]", "\\[|\\]", "");
-- 第二步,将上一步的字符串变为数组
select split(regexp_replace("[101,102,103]", "\\[|\\]", ""), ",");
-- 第三步,使用explode + lateral view 将数据展开 

select username, age, sex, id, ids, num
  from jsont1
lateral view json_tuple(json, 'id', 'ids', 'total_number') t1 as id, ids, num;

-- 完整代码
with tmp as(
  select username, age, sex, id, ids, num
    from jsont1
  lateral view json_tuple(json, 'id', 'ids', 'total_number') t1 as id, ids, num
)
select username, age, sex, id, ids1, num
  from tmp
lateral view explode(split(regexp_replace(ids, "\\[|\\]", ""), ",")) t1 as ids1;

小结:json_tuple 优点是一次可以解析多个json字段,对嵌套结果的解析操作复杂;

4.2、使用UDF处理

自定义UDF处理json串中的数组。

自定义UDF函数:

输入:json串、数组的key

输出:字符串数组

 

pom文件增加依赖

<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>2.3.7</version>
    <scope>provided</scope>
</dependency>
package cn.lagou.dw.hive.udf;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONException;
import com.alibaba.fastjson.JSONObject;
import com.google.common.base.Strings;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.junit.Test;
import java.util.ArrayList;
public class ParseJsonArray extends UDF {
    public ArrayList<String> evaluate(String jsonStr, String arrKey){
        if (Strings.isNullOrEmpty(jsonStr)) {
            return null;
        }
        try{
            JSONObject object = JSON.parseObject(jsonStr);
            JSONArray jsonArray = object.getJSONArray(arrKey);
            ArrayList<String> result = new ArrayList<>();
            for (Object o: jsonArray){
                result.add(o.toString());
            }
            return result;
        } catch (JSONException e){
            return null;
        }
	}
	@Test
    public void JunitParseJsonArray(){
        String str = "{\"id\": 1,\"ids\":[101,102,103],\"total_number\": 3}";
        String key = "ids";
        ArrayList<String> evaluate = evaluate(str, key);
        System.out.println(JSON.toJSONString(evaluate));
    }
}

使用自定义 UDF 函数:

-- 添加开发的jar包(在Hive命令行中)
add jar /root/data/lagoudw/jars/cn.lagou.dw-1.0-SNAPSHOT-jar-with-dependencies.jar;

-- 创建临时函数。指定类名一定要完整的路径,即包名加类名 
create temporary function lagou_json_array as "cn.lagou.dw.hive.udf.ParseJsonArray";

-- 执行查询
-- 解析json串中的数组
select username, age, sex, lagou_json_array(json, "ids") ids from jsont1;

-- 解析json串中的数组,并展开 
select username, age, sex, ids1
  from jsont1
lateral view explode(lagou_json_array(json, "ids")) t1 as ids1;

-- 解析json串中的id、num
select username, age, sex, id, num
  from jsont1
lateral view json_tuple(json, 'id', 'total_number') t1 as id, num;

-- 解析json串中的数组,并展开
select username, age, sex, ids1, id, num
  from jsont1
lateral view explode(lagou_json_array(json, "ids")) t1 as ids1
lateral view json_tuple(json, 'id', 'total_number') t1 as id, num;

4.3、使用SerDe处理

序列化是对象转换为字节序列的过程;反序列化是字节序列恢复为对象的过程;

对象的序列化主要有两种用途:

  • 对象的持久化,即把对象转换成字节序列后保存到文件中
  • 对象数据的网络传送

SerDe 是Serializer 和 Deserializer 的简写形式。Hive使用Serde进行对象的序列与反序列化。最后实现把文件内容映射到 hive 表中的字段数据类型。SerDe包括 Serialize/Deserilize 两个功能:

  • Serialize把Hive使用的java object转换成能写入HDFS字节序列,或者其他系统能识别的流文件
  • Deserialize把字符串或者二进制流转换成Hive能识别的java object对象

Read : HDFS files => InputFileFormat => <key, value> => Deserializer => Row object

Write : Row object => Seriallizer => <key, value> => OutputFileFormat => HDFS files

常见:https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#Deve loperGuide-HiveSerDe

 

Hive本身自带了几个内置的SerDe,还有其他一些第三方的SerDe可供选择。

create table t11(id string)
stored as parquet;
create table t12(id string)
stored as ORC;

desc formatted t11;
desc formatted t12;

LazySimpleSerDe(默认的SerDe)

ParquetHiveSerDe

OrcSerde

 

对于纯 json 格式的数据,可以使用 JsonSerDe 来处理。

{"id": 1,"ids": [101,102,103],"total_number": 3}
{"id": 2,"ids": [201,202,203,204],"total_number": 4}
{"id": 3,"ids": [301,302,303,304,305],"total_number": 5}
{"id": 4,"ids": [401,402,403,304],"total_number": 5}
{"id": 5,"ids": [501,502,503],"total_number": 3}
create table jsont2(
  id int,
  ids array<string>,
  total_number int
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe';
load data local inpath '/root/data/lagoudw/test/json.dat' into table jsont2;

各种Json格式处理方法小结:

1、简单格式的json数据,使用get_json_object、json_tuple处理

2、对于嵌套数据类型,可以使用UDF

3、纯json串可使用JsonSerDe处理更简单

第 5 节 DWD层建表和数据加载

2020-08-02 18:19:32.966 [main] INFO com.lagou.ecommerce.AppStart - {"app_active":{"name":"app_active","json": {"entry":"1","action":"1","error_code":"0"},"time":1596309585861} ,"attr":{"area":"绍 兴","uid":"2F10092A10","app_v":"1.1.16","event_type":"common","de vice_id":"1FB872- 9A10010","os_type":"3.0","channel":"ML","language":"chinese","bra nd":"Huawei-2"}}

主要任务:ODS(包含json串) => DWD json数据解析,丢弃无用数据(数据清洗),保留有效信息,并将数据展开,形成每日启动明细表。

5.1、创建DWD层表

use DWD;
drop table if exists dwd.dwd_start_log;
CREATE TABLE dwd.dwd_start_log(
  `device_id` string,
  `area` string,
  `uid` string,
  `app_v` string,
  `event_type` string,
  `os_type` string,
  `channel` string,
  `language` string,
  `brand` string,
  `entry` string,
  `action` string,
  `error_code` string
)
PARTITIONED BY (dt string)
STORED AS parquet;

表的格式:parquet、分区表

5.2、加载DWD层数据

script/member_active/dwd_load_start.sh

#!/bin/bash
source /etc/profile
# 可以输入日期;如果未输入日期取昨天的时间 
if [ -n "$1" ]
then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
sql="
  with tmp as(
  select split(str, ' ')[7] line
    from ods.ods_start_log
   where dt='$do_date'
  )
  insert overwrite table dwd.dwd_start_log
  partition(dt='$do_date')
  select 
  get_json_object(line, '$.attr.device_id'),
  get_json_object(line, '$.attr.area'),
  get_json_object(line, '$.attr.uid'),
  get_json_object(line, '$.attr.app_v'),
  get_json_object(line, '$.attr.event_type'),
  get_json_object(line, '$.attr.os_type'),
  get_json_object(line, '$.attr.channel'),
  get_json_object(line, '$.attr.language'),
  get_json_object(line, '$.attr.brand'),
  get_json_object(line, '$.app_active.json.entry'),
  get_json_object(line, '$.app_active.json.action'),
  get_json_object(line, '$.app_active.json.error_code')
  from tmp;
"
hive -e "$sql"

日志文件 =》 Flume =》 HDFS =》 ODS =》 DWD ODS =》 DWD;

json数据的解析;数据清洗

 

下一步任务:DWD(会员的每日启动信息明细) => DWS(如何建表,如何加载数据)

活跃会员 ===> 新增会员 ===> 会员留存

第 6 节 活跃会员

活跃会员:打开应用的会员即为活跃会员;

新增会员:第一次使用应用的用户,定义为新增会员;

留存会员:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;

活跃会员指标需求:每日、每周、每月的活跃会员数

DWD:会员的每日启动信息明细(会员都是活跃会员;某个会员可能会出现多次)

DWS:每日活跃会员信息(关键)、每周活跃会员信息、每月活跃会员信息

每日活跃会员信息 ===> 每周活跃会员信息

每日活跃会员信息 ===> 每月活跃会员信息

ADS:每日、每周、每月活跃会员数(输出)

ADS表结构:
daycnt weekcnt monthcnt dt

备注:周、月为自然周、自然月

 

处理过程:

1、建表(每日、每周、每月活跃会员信息)

2、每日启动明细 ===> 每日活跃会员

3、每日活跃会员 => 每周活跃会员;每日活跃会员 => 每月活跃会员

4、汇总生成ADS层的数据

6.1、创建DWS层表

use dws;
drop table if exists dws.dws_member_start_day;
create table dws.dws_member_start_day
(
  `device_id` string, 
  `uid` string,
  `app_v` string, 
  `os_type` string,
  `language` string, 
  `channel` string,
  `area` string,
  `brand` string
) COMMENT '会员日启动汇总' partitioned by(dt string) stored as parquet;

drop table if exists dws.dws_member_start_week;
create table dws.dws_member_start_week(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `week` string
) COMMENT '会员周启动汇总'
PARTITIONED BY (`dt` string) stored as parquet;

drop table if exists dws.dws_member_start_month;
create table dws.dws_member_start_month(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `month` string
) COMMENT '会员月启动汇总' PARTITIONED BY (`dt` string) stored as parquet;

6.2、加载DWS层数据

script/member_active/dws_load_member_start.sh

#!/bin/bash
source /etc/profile
# 可以输入日期;如果未输入日期取昨天的时间 
if [ -n "$1" ]
then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
# 汇总得到每日活跃会员信息;每日数据汇总得到每周、每月数据 
sql="
-- 汇总得到每日活跃会员
insert overwrite table dws.dws_member_start_day partition(dt='$do_date')
select device_id,
  concat_ws('|', collect_set(uid)), 
  concat_ws('|', collect_set(app_v)), 
  concat_ws('|', collect_set(os_type)), 
  concat_ws('|', collect_set(language)), 
  concat_ws('|', collect_set(channel)), 
  concat_ws('|', collect_set(area)), 
  concat_ws('|', collect_set(brand))
from dwd.dwd_start_log
where dt='$do_date'
group by device_id;

-- 汇总得到每周活跃会员
insert overwrite table dws.dws_member_start_week partition(dt='$do_date')
select device_id,
  concat_ws('|', collect_set(uid)),
  concat_ws('|', collect_set(app_v)), 
  concat_ws('|', collect_set(os_type)), 
  concat_ws('|', collect_set(language)), 
  concat_ws('|', collect_set(channel)), 
  concat_ws('|', collect_set(area)), 
  concat_ws('|', collect_set(brand)), 
  date_add(next_day('$do_date', 'mo'), -7)
from dws.dws_member_start_day
where dt >= date_add(next_day('$do_date', 'mo'), -7)
  and dt <= '$do_date'
group by device_id;

-- 汇总得到每月活跃会员
insert overwrite table dws.dws_member_start_month partition(dt='$do_date')
select device_id,
  concat_ws('|', collect_set(uid)),
  concat_ws('|', collect_set(app_v)), 
  concat_ws('|', collect_set(os_type)), 
  concat_ws('|', collect_set(language)), 
  concat_ws('|', collect_set(channel)), 
  concat_ws('|', collect_set(area)),
  concat_ws('|', collect_set(brand)), 
  date_format('$do_date', 'yyyy-MM')
from dws.dws_member_start_day
where dt >= date_format('$do_date', 'yyyy-MM-01')
  and dt <= '$do_date'
group by device_id;
"
hive -e "$sql"

注意shell的引号

 

ODS => DWD => DWS(每日、每周、每月活跃会员的汇总表)

6.3、创建ADS层表

计算当天、当周、当月活跃会员数量

drop table if exists ads.ads_member_active_count; 
create table ads.ads_member_active_count( 
  `day_count` int COMMENT '当日会员数量', 
  `week_count` int COMMENT '当周会员数量', 
  `month_count` int COMMENT '当月会员数量'
) COMMENT '活跃会员数'
partitioned by(dt string)
row format delimited fields terminated by ',';

6.4、加载ADS层数据

script/member_active/ads_load_member_active.sh

#!/bin/bash
source /etc/profile

if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi

sql="
with tmp as(
  select 'day' datelabel, count(*) cnt, dt
  from dws.dws_member_start_day
  where dt='$do_date'
  group by dt
  union all
  select 'week' datelabel, count(*) cnt, dt
  from dws.dws_member_start_week
  where dt='$do_date'
  group by dt
  union all
  select 'month' datelabel, count(*) cnt, dt
  from dws.dws_member_start_month
  where dt='$do_date'
  group by dt
)
insert overwrite table ads.ads_member_active_count
partition(dt='$do_date')
select sum(case when datelabel='day' then cnt end) as day_count,
       sum(case when datelabel='week' then cnt end) as week_count,
       sum(case when datelabel='month' then cnt end) as month_count
from tmp
group by dt;
"
hive -e "$sql"
#!/bin/bash
source /etc/profile

if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi

sql="
insert overwrite table ads.ads_member_active_count partition(dt='$do_date')
select daycnt, weekcnt, monthcnt
  from (select dt, count(*) daycnt
          from dws.dws_member_start_day
         	where dt='$do_date'
        	group by dt
        ) day 
        join
        (select dt, count(*) weekcnt
          from dws.dws_member_start_week
          where dt='$do_date'
        	group by dt
        ) week on day.dt=week.dt
        join
        (select dt, count(*) monthcnt
          from dws.dws_member_start_month
          where dt='$do_date'
        	group by dt
        ) month on day.dt=month.dt;
"
hive -e "$sql"

6.5、小结

image.png

脚本执行次序:

ods_load_startlog.sh
dwd_load_startlog.sh
dws_load_member_start.sh
ads_load_member_active.sh

第7节 新增会员

留存会员:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;

新增会员:第一次使用应用的用户,定义为新增会员;卸载再次安装的设备,不会被算作一次新增。

 

新增会员先计算 => 计算会员留存

需求:每日新增会员数

08-02: DWD:会员每日启动明细(95-110);所有会员的信息(1-100)???

  • 新增会员:101-110
  • 新增会员数据 + 旧的所有会员的信息 = 新的所有会员的信息(1-110)

08-03: DWD:会员每日启动明细(100-120);所有会员的信息(1-110)

  • 新增会员:111-120
  • 新增会员数据 + 旧的所有会员的信息 = 新的所有会员的信息(1-120)

 

计算步骤:

  • 计算新增会员
  • 更新所有会员信息

改进后方法:

  • 在所有会员信息中增加时间列,表示这个会员是哪一天成为新增会员
  • 只需要一张表:所有会员的信息(id,dt)
  • 将新增会员 插入 所有会员表中

 

案例:如何计算新增会员

-- 日启动表 => DWS
drop table t1;
create table t1(id int, dt string)
row format delimited fields terminated by ',';
load data local inpath '/data/lagoudw/data/t1.dat' into table t1;
4,2020-08-02
5,2020-08-02
6,2020-08-02
7,2020-08-02
8,2020-08-02
9,2020-08-02
-- 全量数据 => DWS
drop table t2;
create table t2(id int, dt string)
row format delimited fields terminated by ',';
load data local inpath '/data/lagoudw/data/t2.dat' into table t2;
1,2020-08-01
2,2020-08-01
3,2020-08-01
4,2020-08-01
5,2020-08-01
6,2020-08-01
-- 找出 2020-08-02 的新用户
select t1.id, t1.dt, t2.id, t2.dt
  from t1 left join t2 on t1.id=t2.id
 where t1.dt="2020-08-02";
select t1.id, t1.dt
  from t1 left join t2 on t1.id=t2.id
 where t1.dt="2020-08-02"
   and t2.id is null;
-- 将找到 2020-08-02 新用户数据插入t2表中 insert into table t2
select t1.id, t1.dt
  from t1 left join t2 on t1.id=t2.id
 where t1.dt="2020-08-02"
and t2.id is null; -- 检查结果
select * from t2;
-- t1 加载 2020-08-03 的数据 
14,2020-08-03 
15,2020-08-03 
16,2020-08-03 
17,2020-08-03 
18,2020-08-03 
19,2020-08-03
load data local inpath '/data/lagoudw/data/t3.dat' into table t1;
-- 将找到 2020-08-03 新用户数据插入t2表中
insert into table t2
select t1.id, t1.dt
  from t1 left join t2 on t1.id=t2.id
 where t1.dt="2020-08-03"
   and t2.id is null;
-- 检查结果
select * from t2;

7.1、创建DWS层表

drop table if exists dws.dws_member_add_day;
create table dws.dws_member_add_day
(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `dt` string
) COMMENT '每日新增会员明细' stored as parquet;

7.2、加载DWS层数据

script/member_active/dws_load_member_add_day.sh

#!/bin/bash
source /etc/profile

if [ -n "$1" ]
then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi

sql="
insert into table dws.dws_member_add_day
select t1.device_id,
  t1.uid,
  t1.app_v,
  t1.os_type,
  t1.language,
  t1.channel,
  t1.area,
  t1.brand,
  '$do_date'
from dws.dws_member_start_day t1 left join
dws.dws_member_add_day t2
    on t1.device_id=t2.device_id
 where t1.dt='$do_date'
   and t2.device_id is null;
"
hive -e "$sql"

7.3、创建ADS层表

drop table if exists ads.ads_new_member_cnt;
create table ads.ads_new_member_cnt
(
`cnt` string
)
partitioned by(dt string)
row format delimited fields terminated by ',';

7.4、加载ADS层数据

script/member_active/ads_load_member_add.sh

#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_new_member_cnt
partition (dt='$do_date')
select count(1)
  from dws.dws_member_add_day
 where dt = '$do_date'
 "
hive -e "$sql"

7.5、小结

image.png

调用脚本次序:

dws_load_member_add_day.sh
ads_load_member_add.sh

第8节 留存会员

留存会员与留存率:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;这部分会员占当时新增会员的比例为留存率。

需求:1日、2日、3日的会员留存数和会员留存率

 

30

31

1

2

 
  

10W新会员

3W

1日留存数

 

20W

 

5W

2日留存数

30W

  

4W

3日留存数

10W新会员:dws_member_add_day(dt=08-01)明细

3W:特点 在1号是新会员,在2日启动了(2日的启动日志)

dws_member_start_day

8.1、创建DWS层表

-- 会员留存明细
drop table if exists dws.dws_member_retention_day;
create table dws.dws_member_retention_day
(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `add_date` string comment '会员新增时间', 
  `retention_date` int comment '留存天数'
)COMMENT '每日会员留存明细'
PARTITIONED BY (`dt` string)
stored as parquet;

8.2、加载DWS层数据

script/member_active/dws_load_member_retention_day.sh

#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table dws.dws_member_retention_day partition(dt='$do_date')
(
select t2.device_id,
        t2.uid,
        t2.app_v,
        t2.os_type,
        t2.language,
        t2.channel,
        t2.area,
        t2.brand,
        t2.dt add_date,
        1
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
 where t2.dt=date_add('$do_date', -1)
   and t1.dt='$do_date'
union all
select t2.device_id,
       t2.uid,
       t2.app_v,
       t2.os_type,
       t2.language,
       t2.channel,
       t2.area,
       t2.brand,
       t2.dt add_date,
       2
  from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
 where t2.dt=date_add('$do_date', -2)
   and t1.dt='$do_date'
union all
select t2.device_id,
       t2.uid,
       t2.app_v,
       t2.os_type,
       t2.language,
       t2.channel,
       t2.area,
       t2.brand,
       t2.dt add_date,
       3
  from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -3)
   and t1.dt='$do_date'
);
"
hive -e "$sql"

return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask

一般是内部错误

1、找日志(hive.log【简略】 / MR的日志【详细】)

hive.log ===> 缺省情况下 /tmp/root/hive.log (hive-site.conf)

MR的日志 ===> 启动historyserver、日志聚合 + SQL运行在集群模式

 

2、改写SQL

#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
sql="
drop table if exists tmp.tmp_member_retention;
create table tmp.tmp_member_retention as
(
select t2.device_id,
       t2.uid,
       t2.app_v,
       t2.os_type,
       t2.language,
       t2.channel,
       t2.area,
       t2.brand,
       t2.dt add_date,1
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
 where t2.dt=date_add('$do_date', -1)
   and t1.dt='$do_date'
union all
select t2.device_id,
       t2.uid,
       t2.app_v,
       t2.os_type,
       t2.language,
       t2.channel,
       t2.area,
       t2.brand,
       t2.dt add_date,2
  from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
 where t2.dt=date_add('$do_date', -2)
   and t1.dt='$do_date'
union all
select t2.device_id,
       t2.uid,
       t2.app_v,
       t2.os_type,
       t2.language,
       t2.channel,
       t2.area,
       t2.brand,
       t2.dt add_date,3
  from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
 where t2.dt=date_add('$do_date', -3)
   and t1.dt='$do_date'
);
insert overwrite table dws.dws_member_retention_day partition(dt='$do_date')
select * from tmp.tmp_member_retention;
"
hive -e "$sql"

8.3、创建ADS层表

-- 会员留存数
drop table if exists ads.ads_member_retention_count; 
create table ads.ads_member_retention_count
(`add_date` string comment '新增日期', 
  `retention_day` int comment '截止当前日期留存天数', 
  `retention_count` bigint comment '留存数'
) COMMENT '会员留存数'
partitioned by(dt string)
row format delimited fields terminated by ',';

-- 会员留存率
drop table if exists ads.ads_member_retention_rate; 
create table ads.ads_member_retention_rate
(`add_date` string comment '新增日期',
  `retention_day` int comment '截止当前日期留存天数',
  `retention_count` bigint comment '留存数',
  `new_mid_count` bigint comment '当日会员新增数',
  `retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '会员留存率'
partitioned by(dt string)
row format delimited fields terminated by ',';

8.4、加载ADS层数据

script/member_active/ads_load_member_retention.sh

#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_member_retention_count partition (dt='$do_date')
select add_date, retention_date,
       count(*) retention_count
  from dws.dws_member_retention_day
 where dt='$do_date'
group by add_date, retention_date;
insert overwrite table ads.ads_member_retention_rate partition (dt='$do_date')
select t1.add_date,
       t1.retention_day,
       t1.retention_count,
       t2.cnt,
       t1.retention_count/t2.cnt*100
  from ads.ads_member_retention_count t1 join
ads.ads_new_member_cnt t2 on t1.dt=t2.dt
 where t1.dt='$do_date';
"
hive -e "$sql"

备注:最后一条SQL的连接条件应为:t1.add_date=t2.dt。在10.4 节中有详细说明。

8.5、小结

会员活跃度--活跃会员数、新增会员、留存会员

image.png

脚本调用次序:

# 加载ODS / DWD 层采集 
ods_load_startlog.sh 
dwd_load_startlog.sh

# 活跃会员 
dws_load_member_start.sh 
ads_load_member_active.sh

# 新增会员 
dws_load_member_add_day.sh 
ads_load_member_add.sh

# 会员留存 
dws_load_member_retention_day.sh 
ads_load_member_retention.sh

第9节 Datax 数据导出

image.png

基本概念及安装参见DataX快速入门

ADS有4张表需要从数据仓库的ADS层导入MySQL,即:Hive => MySQL

ads.ads_member_active_count
ads.ads_member_retention_count
ads.ads_member_retention_rate
ads.ads_new_member_cnt
-- MySQL 建表
-- 活跃会员数
create database dwads;
drop table if exists dwads.ads_member_active_count; 
create table dwads.ads_member_active_count(
  `dt` varchar(10) COMMENT '统计日期',
  `day_count` int COMMENT '当日会员数量', 
  `week_count` int COMMENT '当周会员数量', 
  `month_count` int COMMENT '当月会员数量', 
  primary key (dt)
);
-- 新增会员数
drop table if exists dwads.ads_new_member_cnt;
create table dwads.ads_new_member_cnt(
  `dt` varchar(10) COMMENT '统计日期',
  `cnt` VARCHAR(10),
  primary key (dt)
);
-- 会员留存数
drop table if exists dwads.ads_member_retention_count; 
create table dwads.ads_member_retention_count
(
  `dt` varchar(10) COMMENT '统计日期',
  `add_date` VARCHAR(10) comment '新增日期',
  `retention_day` int comment '截止当前日期留存天数',
  `retention_count` bigint comment '留存数'
)
COMMENT '会员留存情况';
 
-- 会员留存率
drop table if exists dwads.ads_member_retention_rate; 
create table dwads.ads_member_retention_rate
(
  `dt` varchar(10) COMMENT '统计日期',
  `add_date` VARCHAR(10) comment '新增日期',
  `retention_day` int comment '截止当前日期留存天数', 
  `retention_count` bigint comment '留存数',
  `new_mid_count` bigint comment '当日会员新增数',
  `retention_ratio` decimal(10,2) comment '留存率'
 ) COMMENT '会员留存率';

导出活跃会员数(ads_member_active_count)

export_member_active_count.json

hdfsreader => mysqlwriter

{
	"job": {
		"setting": {
			"speed": {
				"channel": 1
			}
		},
		"content": [{
			"reader": {
				"name": "hdfsreader",
				"parameter": {
					"path": "/user/hive/warehouse/ads.db/ads_member_active_count/dt=$do_date/*",
					"defaultFS": "hdfs://linux121:9000",
					"column": [{
							"type": "string",
							"value": "$do_date"
						}, {
							"index": 0,
							"type": "string"
						},
						{
							"index": 1,
							"type": "string"
						},
						{
							"index": 2,
							"type": "string"
						}
					],
					"fileType": "text",
					"encoding": "UTF-8",
					"fieldDelimiter": ","
				}
			},
			"writer": {
				"name": "mysqlwriter",
				"parameter": {
					"writeMode": "replace",
					"username": "hive",
					"password": "12345678",
					"column": ["dt", "day_count", "week_count", "month_count"],
					"preSql": [
						""
					],
					"connection": [{
						"jdbcUrl": "jdbc:mysql://linux123:3306/dwads?useUnicode=true&characterEncoding=utf-8",
						"table": [
							"ads_member_active_count"
						]
					}]
				}
			}
		}]
	}
}

执行命令:

python datax.py -p "-Ddo_date=2020-08-02" /data/lagoudw/script/member_active/t1.json

export_member_active_count.sh

#!/bin/bash
JSON=/data/lagoudw/script/member_active
source /etc/profile
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi
python $DATAX_HOME/bin/datax.py -p "-Ddo_date=$do_date" $JSON/export_member_active_count.json

其他三张表的数据导出类似!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值