电商分析之会员活跃度
第 1 节 需求分析
会员数据是后期营销的很重要的数据。网店会专门针对会员进行一系列营销活动。
电商会员一般门槛较低,注册网站即可加入。有些电商平台的高级会员具有时效性,需要购买VIP会员卡或一年内消费额达到多少才能成为高级会员。
计算指标:
新增会员:每日新增会员数
活跃会员:每日,每周,每月的活跃会员数
会员留存:1日,2日,3日会员留存数、1日,2日,3日会员留存率
指标口径业务逻辑:
会员:以设备为判断标准,每个独立设备认为是一个会员。Android系统通常根据IMEI号,IOS系统通常根据OpenUDID来标识一个独立会员,每部移动设备是一个会员;
活跃会员:打开应用的会员即为活跃会员,暂不考虑用户的实际使用情况。一台设备每天多次打开计算为一个活跃会员。在自然周内启动过应用的会员为周活跃会员,同理还有月活跃会员;
会员活跃率:一天内活跃会员数与总会员数的比率是日活跃率;还有周活跃率(自 然周)、月活跃率(自然月);
新增会员:第一次使用应用的用户,定义为新增会员;卸载再次安装的设备,不会被算作一次新增。新增用户包括日新增会员、周(自然周)新增会员、月(自然 月)新增会员;
留存会员与留存率:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;这部分会员占当时新增会员的比例为留存率。
已知条件:
1、明确了需求
2、输入:启动日志(OK)、事件日志
3、输出:新增会员、活跃会员、留存会员
4、日志文件、ODS、DWD、DWS、ADS(输出)
下一步做什么?
数据采集:日志文件 => Flume => HDFS => ODS
第 2 节 日志数据采集
原始日志数据(一条启动日志)
2020-07-30 14:18:47.339 [main] INFO com.lagou.ecommerce.AppStart - {"app_active":{"name":"app_active","json":{"entry":"1","action":"1","error_code":"0"},"time":1596111888529} ,"attr":{"area":"泰 安","uid":"2F10092A9","app_v":"1.1.13","event_type":"common","dev ice_id":"1FB872- 9A1009","os_type":"4.7.3","channel":"DK","language":"chinese","br and":"iphone-9"}}
数据采集的流程:
选择Flume作为采集日志数据的工具:
- Flume 1.6
-
- 无论是Spooling Directory Source、Exec Source均不能很好的满足动态实时收集的需求
- Flume 1.8+
-
- 提供了一个非常好用的 Taildir Source
- 使用该source,可以监控多个目录,对目录中新写入的数据进行实时采集
2.1、taildir source配置
taildir Source的特点:
- 使用正则表达式匹配目录中的文件名
- 监控的文件中,一旦有数据写入,Flume就会将信息写入到指定的Sink
- 高可靠,不会丢失数据不会对跟踪文件有任何处理,不会重命名也不会删除
- 不支持Windows,不能读二进制文件。支持按行读取文本文件
taildir source配置
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
- positionFile
配置检查点文件的路径,检查点文件会以 json 格式保存已经读取文件的位置,解决断点续传的问题
- filegroups
指定filegroups,可以有多个,以空格分隔(taildir source可同时监控多个目录中的文件)
- filegroups.
配置每个filegroup的文件绝对路径,文件名可以用正则表达式匹配
2.2、hdfs sink配置
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path =/user/data/logs/start/%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = startlog.
# 配置文件滚动方式(文件大小32M)
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数
a1.sinks.k1.hdfs.batchSize = 100
# 使用本地时间
a1.sinks.k1.hdfs.useLocalTimeStamp = true
HDFS Sink 都会采用滚动生成文件的方式,滚动生成文件的策略有:
- 基于时间。hdfs.rollInterval 30秒
- 基于文件大小。hdfs.rollSize 1024字节
- 基于event数量。hdfs.rollCount 10个event
- 基于文件空闲时间。hdfs.idleTimeout 0
- minBlockReplicas。默认值与 hdfs 副本数一致。设为1是为了让 Flume 感知不到hdfs的块复制,此时其他的滚动方式配置(时间间隔、文件大小、events数量)才不会受影响
2.3、Agent的配置
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000
# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/start/%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = startlog
a1.sinks.k1.hdfs.fileType = DataStream
# 配置文件滚动方式(文件大小32M)
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数
a1.sinks.k1.hdfs.batchSize = 1000
# 使用本地时间
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
/data/lagoudw/conf/flume-log2hdfs.conf
2.4、Flume的优化配置
1、启动agent
flume-ng agent --conf-file /data/lagoudw/conf/flume-log2hdfs1.conf -name a1 -Dflume.roog.logger=INFO,console
2、向 /data/lagoudw/logs/ 目录中放入日志文件
报错: java.lang.OutOfMemoryError: GC overhead limit exceeded
缺省情况下 Flume jvm堆最大分配20m,这个值太小,需要调整。
3、解决方案:在 $FLUME_HOME/conf/flume-env.sh 中增加以下内容
export JAVA_OPTS="-Xms4000m -Xmx4000m -Dcom.sun.management.jmxremote"
# 要想使配置文件生效,还要在命令行中指定配置文件目录
flume-ng agent --conf /opt/apps/flume-1.9/conf --conf-file /data/lagoudw/conf/flume-log2hdfs1.conf -name a1 - Dflume.roog.logger=INFO,console
- Flume内存参数设置及优化: 根据日志数据量的大小,Jvm堆一般要设置为4G或更高
- -Xms -Xmx 最好设置一致,减少内存抖动带来的性能影响
存在的问题:Flume放数据时,使用本地时间;不理会日志的时间戳
2.5、自定义拦截器
前面 Flume Agent 的配置使用了本地时间,可能导致数据存放的路径不正确。
要解决以上问题需要使用自定义拦截器。
agent用于测试自定义拦截器。netcat source =>logger sink
# a1是agent的名称。source、channel、sink的名称分别为:r1 c1 k1
a1.sources = r1
a1.channels = c1
a1.sinks = k1
# source
a1.sources.r1.type = netcat
a1.sources.r1.bind = linux122
a1.sources.r1.port = 9999
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = cn.lagou.dw.flume.interceptor.CustomerInterceptor$Builder
# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100
# sink
a1.sinks.k1.type = logger
# source、channel、sink之间的关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
自定义拦截器的原理:
1、自定义拦截器要集成Flume 的 Interceptor
2、Event 分为header 和 body(接收的字符串)
3、获取header和body
4、从body中获取"time":1596382570539,并将时间戳转换为字符串 "yyyy-MM- dd"
5、将转换后的字符串放置header中
自定义拦截器的实现:
1、获取 event 的 header
2、获取 event 的 body
3、解析body获取json串
4、解析json串获取时间戳
5、将时间戳转换为字符串 "yyyy-MM-dd"
6、将转换后的字符串放置header中
7、返回event
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.1.23</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
package cn.lagou.dw.flume.interceptor;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.google.common.base.Strings;
import org.apache.commons.compress.utils.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.event.SimpleEvent;
import org.apache.flume.interceptor.Interceptor;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class CustomerInterceptor implements Interceptor {
private static DateTimeFormatter formatter =
DateTimeFormatter.ofPattern("yyyy-MM-dd");
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
String eventbody = new String(event.getBody(), Charsets.UTF_8);
Map<String, String> headerMap = event.getHeaders();
String[] bodyArr = eventbody.split("\\s+");
try {
String jsonStr = bodyArr[6];
if (Strings.isNullOrEmpty(jsonStr)) {
return null;
}
JSONObject jsonObject = JSON.parseObject(jsonStr).getJSONObject("app_active");
String timestampStr = jsonObject.getString("time");
// 将 timestamp 转为 时间日期类型(格式:yyyy-MM-dd)
long timeStamp = Long.parseLong(timestampStr);
String date = formatter.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(timeStamp), ZoneId.systemDefault()));
headerMap.put("logtime", date);
event.setHeaders(headerMap);
} catch (Exception e) {
headerMap.put("logtime", "unknown");
event.setHeaders(headerMap);
}
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
List<Event> out = new ArrayList<>();
for(Event event : events) {
Event outEvent = intercept(event);
if (outEvent != null) {
out.add(outEvent);
}
}
return out;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
@Override
public Interceptor build() {
return new CustomerInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
将程序打包,放在 flume/lib目录下;
启动Agent测试
flume-ng agent --conf /opt/lagou/servers/flume-1.9.0/conf/ --conf-file /root/data/lagoudw/conf/flumetest1.conf -name a1 -Dflume.root.logger=INFO,console
2.6、采集启动日志(使用自定义拦截器)
1、定义配置文件
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = cn.lagou.dw.flume.interceptor.CustomerInterceptor$Builder
# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000
# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/start/dt=%{logtime}/
a1.sinks.k1.hdfs.filePrefix = startlog.
a1.sinks.k1.hdfs.fileType = DataStream
# 配置文件滚动方式(文件大小32M)
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数
a1.sinks.k1.hdfs.batchSize = 1000
v
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
修改:
- 给source增加自定义拦截器
- 去掉本地时间戳 a1.sinks.k1.hdfs.useLocalTimeStamp = true
- 根据header中的logtime写文件
2、启动服务
# 测试
flume-ng agent --conf /opt/lagou/servers/flume-1.9.0/conf/ --conf-file /root/data/lagoudw/conf/flume-log2hdfs2.conf -name a1 -Dflume.root.logger=INFO,consolet.logger=INFO,console
3、拷贝日志
4、检查HDFS文件
2.7、采集启动日志和事件日志
本系统中要采集两种日志:启动日志、事件日志,不同的日志放置在不同的目录下。要想一次拿到全部日志需要监控多个目录。
总体思路
1、taildir监控多个目录
2、修改自定义拦截器,不同来源的数据加上不同标志
3、hdfs sink 根据标志写文件
Agent配置
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/data/lagoudw/conf/startlog_position.json
a1.sources.r1.filegroups = f1 f2
a1.sources.r1.filegroups.f1 = /root/data/lagoudw/logs/start/.*log
a1.sources.r1.headers.f1.logtype = start
a1.sources.r1.filegroups.f2 = /root/data/lagoudw/logs/event/.*log
a1.sources.r1.headers.f2.logtype = event
# 自定义拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = cn.lagou.dw.flume.interceptor.LogTypeInterceptor$Builder
# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000
# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/%{logtype}/dt=%{logtime}/
a1.sinks.k1.hdfs.filePrefix = %{logtype}log
a1.sinks.k1.hdfs.fileType = DataStream
# 配置文件滚动方式(文件大小32M)
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数
a1.sinks.k1.hdfs.batchSize = 1000
# 使用本地时间
# a1.sinks.k1.hdfs.useLocalTimeStamp = true
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
- filegroups
指定filegroups,可以有多个,以空格分隔(taildir source可同时监控多个目录中的文件)
- headers.<filegroupName>.<headerKey>
给event增加header key。不同的filegroup,可配置不同的value
自定义拦截器
编码完成后打包上传服务器,放置在$FLUME_HOME/lib 下
package cn.lagou.dw.flume.interceptor;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.google.common.base.Strings;
import org.apache.commons.compress.utils.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
public class LogTypeInterceptor implements Interceptor {
private static DateTimeFormatter formatter =
DateTimeFormatter.ofPattern("yyyy-MM-dd");
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
String eventbody = new String(event.getBody(), Charsets.UTF_8);
Map<String, String> headerMap = event.getHeaders();
String[] bodyArr = eventbody.split("\\s+");
try {
String jsonStr = bodyArr[6];
if (Strings.isNullOrEmpty(jsonStr)) {
return null;
}
String timestampStr = "";
JSONObject jsonObject = JSON.parseObject(jsonStr);
if (headerMap.getOrDefault("logtype", "").equals("start")){
// 取启动日志的时间戳
timestampStr = jsonObject.getJSONObject("app_active").getString("time");
} else if (headerMap.getOrDefault("logtype","").equals("event")) {
// 取事件日志第一条记录的时间戳
JSONArray jsonArray = jsonObject.getJSONArray("lagou_event");
if (jsonArray.size() > 0){
timestampStr = jsonArray.getJSONObject(0).getString("time");
}
}
// 将 timestamp 转为 时间日期类型(格式:yyyy-MM-dd)
long timeStamp = Long.parseLong(timestampStr);
String date = formatter.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(timeStamp), ZoneId.systemDefault()));
headerMap.put("logtime", date);
event.setHeaders(headerMap);
} catch (Exception e) {
headerMap.put("logtime", "unknown");
event.setHeaders(headerMap);
}
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
List<Event> out = new ArrayList<>();
for(Event event : events) {
Event outEvent = intercept(event);
if (outEvent != null) {
out.add(outEvent);
}
}
return out;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
@Override
public Interceptor build() {
return new LogTypeInterceptor();
}
@Override
public void configure(Context context) {
}
}
@Test
public void testJunit(){
String str = new String("2020-08-20 12:00:58.400 [main] INFO com.lagou.ecommerce.AppEvent - {\"lagou_event\":[{\"name\":\"goods_detail_loading\",\"json\":{\"entry\":\"3\",\"goodsid\":\"0\",\"loading_time\":\"100\",\"action\":\"3\",\"staytime\":\"34\",\"showtype\":\"4\"},\"time\":1595340530671},{\"name\":\"praise\",\"json\":{\"id\":4,\"type\":2,\"add_time\":\"1597827924588\",\"userid\":5,\"target\":9},\"time\":1595301323236}],\"attr\":{\"area\":\"文登\",\"uid\":\"2F10092A1\",\"app_v\":\"1.1.9\",\"event_type\":\"common\",\"device_id\":\"1FB872-9A1001\",\"os_type\":\"0.93\",\"channel\":\"BB\",\"language\":\"chinese\",\"brand\":\"xiaomi-9\"}}");
Map<String,String> map = new HashMap<>();
Event event = new SimpleEvent();
map.put("logtype","event");
event.setHeaders(map);
event.setBody(str.getBytes(Charsets.UTF_8));
LogTypeInterceptor customerInterceptor = new LogTypeInterceptor();
Event outEvent = customerInterceptor.intercept(event);
Map<String, String> headers = outEvent.getHeaders();
System.out.println(JSON.toJSONString(headers));
}
}
测试
启动Agent,拷贝日志,检查HDFS文件
# 清理环境
rm -f /data/lagoudw/conf/startlog_position.json
rm -f /data/lagoudw/logs/start/*.log
rm -f /data/lagoudw/logs/event/*.log
# 启动 Agent
flume-ng agent --conf /opt/lagou/servers/flume-1.9.0/conf/ --conf-file /root/data/lagoudw/conf/flume-log2hdfs3.conf -name a1 -Dflume.root.logger=INFO,console
# 拷贝日志
cd /data/lagoudw/logs/source cp event0802.log ../event/ cp start0802.log ../start/
# 检查HDFS文件
hdfs dfs -ls /user/data/logs/event hdfs dfs -ls /user/data/logs/start
# 生产环境中用以下方式启动Agent
nohup flume-ng agent --conf /opt/apps/flume-1.9/conf --conf-file /data/lagoudw/conf/flume-log2hdfs3.conf -name a1 - Dflume.root.logger=INFO,LOGFILE > /dev/null 2>&1 &
- nohup,该命令允许用户退出帐户/关闭终端之后继续运行相应的进程
- /dev/null,代表linux的空设备文件,所有往这个文件里面写入的内容都会丢失,俗称黑洞
- 标准输入0,从键盘获得输入 /proc/self/fd/0
- 标准输出1,输出到屏幕(控制台) /proc/self/fd/1
- 错误输出2,输出到屏幕(控制台) /proc/self/fd/2
- >/dev/null 标准输出1重定向到 /dev/null 中,此时标准输出不存在,没有任何地方能够找到输出的内容
- 2>&1 错误输出将会和标准输出输出到同一个地方
- >/dev/null 2>&1 不会输出任何信息到控制台,也不会有任何信息输出到文件中
2.8 日志数据采集小结
- 使用taildir source 监控指定的多个目录,可以给不同目录的日志加上不同header
- 在每个目录中可以使用正则匹配多个文件
- 使用自定义拦截器,主要功能是从json串中获取时间戳,加到event的header中
- hdfs sink使用event header中的信息写数据(控制写文件的位置)
- hdfs文件的滚动方式(基于文件大小、基于event数量、基于时间)
- 调节flume jvm内存的分配
第 3 节 ODS建表和数据加载
ODS层的数据与源数据的格式基本相同。
创建ODS层表:
use ODS;
create external table ods.ods_start_log( `str` string)
comment '用户启动日志信息'
partitioned by (`dt` string)
location '/user/data/logs/start';
-- 加载数据的功能(测试时使用)
alter table ods.ods_start_log add partition(dt='2020-08-02');
alter table ods.ods_start_log drop partition (dt='2020-08-02');
加载启动日志数据:
script/member_active/ods_load_log.sh
可以传参数确定日志,如果没有传参使用昨天日期
#!/bin/bash
APP=ODS
hive=/opt/lagou/servers/hive-2.3.7/bin/hive
# 可以输入日期;如果未输入日期取昨天的时间
if [ -n "$1" ]
then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
sql="
alter table "$APP".ods_start_log add partition(dt='$do_date'); "
$hive -e "$sql"
第 4 节 json数据处理
数据文件中每行必须是一个完整的 json 串,一个 json串不能跨越多行。
Hive 处理json数据总体来说有三个办法:
- 使用内建的函数get_json_object、json_tuple
- 使用自定义的UDF
- 第三方的SerDe
4.1、使用内建函数处理
get_json_object(string json_string, string path)
返回值:String
说明:解析json字符串json_string,返回path指定的内容;如果输入的json字符串无效,那么返回NUll;函数每次只能返回一个数据项;
json_tuple(jsonStr, k1, k2, ...)
返回值:所有的输入参数、输出参数都是String;
说明:参数为一组键k1,k2,。。。。。和json字符串,返回值的元组。该方法比 get_json_object高效,因此可以在一次调用中输入多个键;
explode,使用explod将Hive一行中复杂的 array 或 map 结构拆分成多行。
测试数据:
user1;18;male;{"id": 1,"ids": [101,102,103],"total_number": 3}
user2;20;female;{"id": 2,"ids": [201,202,203,204],"total_number":4}
user3;23;male;{"id": 3,"ids":[301,302,303,304,305],"total_number": 5}
user4;17;male;{"id": 4,"ids": [401,402,403,304],"total_number":5}
user5;35;female;{"id": 5,"ids": [501,502,503],"total_number": 3}
建表加载数据:
CREATE TABLE IF NOT EXISTS jsont1(
username string,
age int,
sex string,
json string
)
row format delimited fields terminated by ';';
load data local inpath '/root/data/lagoudw/test/weibo.json' overwrite into table jsont1;
json的处理:
-- get 单层值
select username, age, sex,
get_json_object(json, "$.id") id,
get_json_object(json, "$.ids") ids,
get_json_object(json, "$.total_number") num
from jsont1;
-- get 数组
select username, age, sex,
get_json_object(json, "$.id") id,
get_json_object(json, "$.ids[0]") ids0,
get_json_object(json, "$.ids[1]") ids1,
get_json_object(json, "$.ids[2]") ids2,
get_json_object(json, "$.ids[3]") ids3,
get_json_object(json, "$.total_number") num
from jsont1;
-- 使用 json_tuple 一次处理多个字段
select json_tuple(json, 'id', 'ids', 'total_number')
from jsont1;
-- 有语法错误,只能单独处理json串。
select username, age, sex, json_tuple(json, 'id', 'ids', 'total_number')
from jsont1;
-- 使用 explode + lateral view
-- 在上一步的基础上,再将数据展开
-- 第一步,将 [101,102,103] 中的 [ ] 替换掉
-- select "[101,102,103]"
-- select "101,102,103"
select regexp_replace("[101,102,103]", "\\[|\\]", "");
-- 第二步,将上一步的字符串变为数组
select split(regexp_replace("[101,102,103]", "\\[|\\]", ""), ",");
-- 第三步,使用explode + lateral view 将数据展开
select username, age, sex, id, ids, num
from jsont1
lateral view json_tuple(json, 'id', 'ids', 'total_number') t1 as id, ids, num;
-- 完整代码
with tmp as(
select username, age, sex, id, ids, num
from jsont1
lateral view json_tuple(json, 'id', 'ids', 'total_number') t1 as id, ids, num
)
select username, age, sex, id, ids1, num
from tmp
lateral view explode(split(regexp_replace(ids, "\\[|\\]", ""), ",")) t1 as ids1;
小结:json_tuple 优点是一次可以解析多个json字段,对嵌套结果的解析操作复杂;
4.2、使用UDF处理
自定义UDF处理json串中的数组。
自定义UDF函数:
输入:json串、数组的key
输出:字符串数组
pom文件增加依赖
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.7</version>
<scope>provided</scope>
</dependency>
package cn.lagou.dw.hive.udf;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONException;
import com.alibaba.fastjson.JSONObject;
import com.google.common.base.Strings;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.junit.Test;
import java.util.ArrayList;
public class ParseJsonArray extends UDF {
public ArrayList<String> evaluate(String jsonStr, String arrKey){
if (Strings.isNullOrEmpty(jsonStr)) {
return null;
}
try{
JSONObject object = JSON.parseObject(jsonStr);
JSONArray jsonArray = object.getJSONArray(arrKey);
ArrayList<String> result = new ArrayList<>();
for (Object o: jsonArray){
result.add(o.toString());
}
return result;
} catch (JSONException e){
return null;
}
}
@Test
public void JunitParseJsonArray(){
String str = "{\"id\": 1,\"ids\":[101,102,103],\"total_number\": 3}";
String key = "ids";
ArrayList<String> evaluate = evaluate(str, key);
System.out.println(JSON.toJSONString(evaluate));
}
}
使用自定义 UDF 函数:
-- 添加开发的jar包(在Hive命令行中)
add jar /root/data/lagoudw/jars/cn.lagou.dw-1.0-SNAPSHOT-jar-with-dependencies.jar;
-- 创建临时函数。指定类名一定要完整的路径,即包名加类名
create temporary function lagou_json_array as "cn.lagou.dw.hive.udf.ParseJsonArray";
-- 执行查询
-- 解析json串中的数组
select username, age, sex, lagou_json_array(json, "ids") ids from jsont1;
-- 解析json串中的数组,并展开
select username, age, sex, ids1
from jsont1
lateral view explode(lagou_json_array(json, "ids")) t1 as ids1;
-- 解析json串中的id、num
select username, age, sex, id, num
from jsont1
lateral view json_tuple(json, 'id', 'total_number') t1 as id, num;
-- 解析json串中的数组,并展开
select username, age, sex, ids1, id, num
from jsont1
lateral view explode(lagou_json_array(json, "ids")) t1 as ids1
lateral view json_tuple(json, 'id', 'total_number') t1 as id, num;
4.3、使用SerDe处理
序列化是对象转换为字节序列的过程;反序列化是字节序列恢复为对象的过程;
对象的序列化主要有两种用途:
- 对象的持久化,即把对象转换成字节序列后保存到文件中
- 对象数据的网络传送
SerDe 是Serializer 和 Deserializer 的简写形式。Hive使用Serde进行对象的序列与反序列化。最后实现把文件内容映射到 hive 表中的字段数据类型。SerDe包括 Serialize/Deserilize 两个功能:
- Serialize把Hive使用的java object转换成能写入HDFS字节序列,或者其他系统能识别的流文件
- Deserialize把字符串或者二进制流转换成Hive能识别的java object对象
Read : HDFS files => InputFileFormat => <key, value> => Deserializer => Row object
Write : Row object => Seriallizer => <key, value> => OutputFileFormat => HDFS files
常见:https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#Deve loperGuide-HiveSerDe
Hive本身自带了几个内置的SerDe,还有其他一些第三方的SerDe可供选择。
create table t11(id string)
stored as parquet;
create table t12(id string)
stored as ORC;
desc formatted t11;
desc formatted t12;
LazySimpleSerDe(默认的SerDe)
ParquetHiveSerDe
OrcSerde
对于纯 json 格式的数据,可以使用 JsonSerDe 来处理。
{"id": 1,"ids": [101,102,103],"total_number": 3}
{"id": 2,"ids": [201,202,203,204],"total_number": 4}
{"id": 3,"ids": [301,302,303,304,305],"total_number": 5}
{"id": 4,"ids": [401,402,403,304],"total_number": 5}
{"id": 5,"ids": [501,502,503],"total_number": 3}
create table jsont2(
id int,
ids array<string>,
total_number int
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe';
load data local inpath '/root/data/lagoudw/test/json.dat' into table jsont2;
各种Json格式处理方法小结:
1、简单格式的json数据,使用get_json_object、json_tuple处理
2、对于嵌套数据类型,可以使用UDF
3、纯json串可使用JsonSerDe处理更简单
第 5 节 DWD层建表和数据加载
2020-08-02 18:19:32.966 [main] INFO com.lagou.ecommerce.AppStart - {"app_active":{"name":"app_active","json": {"entry":"1","action":"1","error_code":"0"},"time":1596309585861} ,"attr":{"area":"绍 兴","uid":"2F10092A10","app_v":"1.1.16","event_type":"common","de vice_id":"1FB872- 9A10010","os_type":"3.0","channel":"ML","language":"chinese","bra nd":"Huawei-2"}}
主要任务:ODS(包含json串) => DWD json数据解析,丢弃无用数据(数据清洗),保留有效信息,并将数据展开,形成每日启动明细表。
5.1、创建DWD层表
use DWD;
drop table if exists dwd.dwd_start_log;
CREATE TABLE dwd.dwd_start_log(
`device_id` string,
`area` string,
`uid` string,
`app_v` string,
`event_type` string,
`os_type` string,
`channel` string,
`language` string,
`brand` string,
`entry` string,
`action` string,
`error_code` string
)
PARTITIONED BY (dt string)
STORED AS parquet;
表的格式:parquet、分区表
5.2、加载DWD层数据
script/member_active/dwd_load_start.sh
#!/bin/bash
source /etc/profile
# 可以输入日期;如果未输入日期取昨天的时间
if [ -n "$1" ]
then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
sql="
with tmp as(
select split(str, ' ')[7] line
from ods.ods_start_log
where dt='$do_date'
)
insert overwrite table dwd.dwd_start_log
partition(dt='$do_date')
select
get_json_object(line, '$.attr.device_id'),
get_json_object(line, '$.attr.area'),
get_json_object(line, '$.attr.uid'),
get_json_object(line, '$.attr.app_v'),
get_json_object(line, '$.attr.event_type'),
get_json_object(line, '$.attr.os_type'),
get_json_object(line, '$.attr.channel'),
get_json_object(line, '$.attr.language'),
get_json_object(line, '$.attr.brand'),
get_json_object(line, '$.app_active.json.entry'),
get_json_object(line, '$.app_active.json.action'),
get_json_object(line, '$.app_active.json.error_code')
from tmp;
"
hive -e "$sql"
日志文件 =》 Flume =》 HDFS =》 ODS =》 DWD ODS =》 DWD;
json数据的解析;数据清洗
下一步任务:DWD(会员的每日启动信息明细) => DWS(如何建表,如何加载数据)
活跃会员 ===> 新增会员 ===> 会员留存
第 6 节 活跃会员
活跃会员:打开应用的会员即为活跃会员;
新增会员:第一次使用应用的用户,定义为新增会员;
留存会员:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;
活跃会员指标需求:每日、每周、每月的活跃会员数
DWD:会员的每日启动信息明细(会员都是活跃会员;某个会员可能会出现多次)
DWS:每日活跃会员信息(关键)、每周活跃会员信息、每月活跃会员信息
每日活跃会员信息 ===> 每周活跃会员信息
每日活跃会员信息 ===> 每月活跃会员信息
ADS:每日、每周、每月活跃会员数(输出)
ADS表结构:
daycnt weekcnt monthcnt dt
备注:周、月为自然周、自然月
处理过程:
1、建表(每日、每周、每月活跃会员信息)
2、每日启动明细 ===> 每日活跃会员
3、每日活跃会员 => 每周活跃会员;每日活跃会员 => 每月活跃会员
4、汇总生成ADS层的数据
6.1、创建DWS层表
use dws;
drop table if exists dws.dws_member_start_day;
create table dws.dws_member_start_day
(
`device_id` string,
`uid` string,
`app_v` string,
`os_type` string,
`language` string,
`channel` string,
`area` string,
`brand` string
) COMMENT '会员日启动汇总' partitioned by(dt string) stored as parquet;
drop table if exists dws.dws_member_start_week;
create table dws.dws_member_start_week(
`device_id` string,
`uid` string,
`app_v` string,
`os_type` string,
`language` string,
`channel` string,
`area` string,
`brand` string,
`week` string
) COMMENT '会员周启动汇总'
PARTITIONED BY (`dt` string) stored as parquet;
drop table if exists dws.dws_member_start_month;
create table dws.dws_member_start_month(
`device_id` string,
`uid` string,
`app_v` string,
`os_type` string,
`language` string,
`channel` string,
`area` string,
`brand` string,
`month` string
) COMMENT '会员月启动汇总' PARTITIONED BY (`dt` string) stored as parquet;
6.2、加载DWS层数据
script/member_active/dws_load_member_start.sh
#!/bin/bash
source /etc/profile
# 可以输入日期;如果未输入日期取昨天的时间
if [ -n "$1" ]
then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
# 汇总得到每日活跃会员信息;每日数据汇总得到每周、每月数据
sql="
-- 汇总得到每日活跃会员
insert overwrite table dws.dws_member_start_day partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand))
from dwd.dwd_start_log
where dt='$do_date'
group by device_id;
-- 汇总得到每周活跃会员
insert overwrite table dws.dws_member_start_week partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand)),
date_add(next_day('$do_date', 'mo'), -7)
from dws.dws_member_start_day
where dt >= date_add(next_day('$do_date', 'mo'), -7)
and dt <= '$do_date'
group by device_id;
-- 汇总得到每月活跃会员
insert overwrite table dws.dws_member_start_month partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand)),
date_format('$do_date', 'yyyy-MM')
from dws.dws_member_start_day
where dt >= date_format('$do_date', 'yyyy-MM-01')
and dt <= '$do_date'
group by device_id;
"
hive -e "$sql"
注意shell的引号
ODS => DWD => DWS(每日、每周、每月活跃会员的汇总表)
6.3、创建ADS层表
计算当天、当周、当月活跃会员数量
drop table if exists ads.ads_member_active_count;
create table ads.ads_member_active_count(
`day_count` int COMMENT '当日会员数量',
`week_count` int COMMENT '当周会员数量',
`month_count` int COMMENT '当月会员数量'
) COMMENT '活跃会员数'
partitioned by(dt string)
row format delimited fields terminated by ',';
6.4、加载ADS层数据
script/member_active/ads_load_member_active.sh
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
with tmp as(
select 'day' datelabel, count(*) cnt, dt
from dws.dws_member_start_day
where dt='$do_date'
group by dt
union all
select 'week' datelabel, count(*) cnt, dt
from dws.dws_member_start_week
where dt='$do_date'
group by dt
union all
select 'month' datelabel, count(*) cnt, dt
from dws.dws_member_start_month
where dt='$do_date'
group by dt
)
insert overwrite table ads.ads_member_active_count
partition(dt='$do_date')
select sum(case when datelabel='day' then cnt end) as day_count,
sum(case when datelabel='week' then cnt end) as week_count,
sum(case when datelabel='month' then cnt end) as month_count
from tmp
group by dt;
"
hive -e "$sql"
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_member_active_count partition(dt='$do_date')
select daycnt, weekcnt, monthcnt
from (select dt, count(*) daycnt
from dws.dws_member_start_day
where dt='$do_date'
group by dt
) day
join
(select dt, count(*) weekcnt
from dws.dws_member_start_week
where dt='$do_date'
group by dt
) week on day.dt=week.dt
join
(select dt, count(*) monthcnt
from dws.dws_member_start_month
where dt='$do_date'
group by dt
) month on day.dt=month.dt;
"
hive -e "$sql"
6.5、小结
脚本执行次序:
ods_load_startlog.sh
dwd_load_startlog.sh
dws_load_member_start.sh
ads_load_member_active.sh
第7节 新增会员
留存会员:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;
新增会员:第一次使用应用的用户,定义为新增会员;卸载再次安装的设备,不会被算作一次新增。
新增会员先计算 => 计算会员留存
需求:每日新增会员数
08-02: DWD:会员每日启动明细(95-110);所有会员的信息(1-100)???
- 新增会员:101-110
- 新增会员数据 + 旧的所有会员的信息 = 新的所有会员的信息(1-110)
08-03: DWD:会员每日启动明细(100-120);所有会员的信息(1-110)
- 新增会员:111-120
- 新增会员数据 + 旧的所有会员的信息 = 新的所有会员的信息(1-120)
计算步骤:
- 计算新增会员
- 更新所有会员信息
改进后方法:
- 在所有会员信息中增加时间列,表示这个会员是哪一天成为新增会员
- 只需要一张表:所有会员的信息(id,dt)
- 将新增会员 插入 所有会员表中
案例:如何计算新增会员
-- 日启动表 => DWS
drop table t1;
create table t1(id int, dt string)
row format delimited fields terminated by ',';
load data local inpath '/data/lagoudw/data/t1.dat' into table t1;
4,2020-08-02
5,2020-08-02
6,2020-08-02
7,2020-08-02
8,2020-08-02
9,2020-08-02
-- 全量数据 => DWS
drop table t2;
create table t2(id int, dt string)
row format delimited fields terminated by ',';
load data local inpath '/data/lagoudw/data/t2.dat' into table t2;
1,2020-08-01
2,2020-08-01
3,2020-08-01
4,2020-08-01
5,2020-08-01
6,2020-08-01
-- 找出 2020-08-02 的新用户
select t1.id, t1.dt, t2.id, t2.dt
from t1 left join t2 on t1.id=t2.id
where t1.dt="2020-08-02";
select t1.id, t1.dt
from t1 left join t2 on t1.id=t2.id
where t1.dt="2020-08-02"
and t2.id is null;
-- 将找到 2020-08-02 新用户数据插入t2表中 insert into table t2
select t1.id, t1.dt
from t1 left join t2 on t1.id=t2.id
where t1.dt="2020-08-02"
and t2.id is null; -- 检查结果
select * from t2;
-- t1 加载 2020-08-03 的数据
14,2020-08-03
15,2020-08-03
16,2020-08-03
17,2020-08-03
18,2020-08-03
19,2020-08-03
load data local inpath '/data/lagoudw/data/t3.dat' into table t1;
-- 将找到 2020-08-03 新用户数据插入t2表中
insert into table t2
select t1.id, t1.dt
from t1 left join t2 on t1.id=t2.id
where t1.dt="2020-08-03"
and t2.id is null;
-- 检查结果
select * from t2;
7.1、创建DWS层表
drop table if exists dws.dws_member_add_day;
create table dws.dws_member_add_day
(
`device_id` string,
`uid` string,
`app_v` string,
`os_type` string,
`language` string,
`channel` string,
`area` string,
`brand` string,
`dt` string
) COMMENT '每日新增会员明细' stored as parquet;
7.2、加载DWS层数据
script/member_active/dws_load_member_add_day.sh
#!/bin/bash
source /etc/profile
if [ -n "$1" ]
then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert into table dws.dws_member_add_day
select t1.device_id,
t1.uid,
t1.app_v,
t1.os_type,
t1.language,
t1.channel,
t1.area,
t1.brand,
'$do_date'
from dws.dws_member_start_day t1 left join
dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t1.dt='$do_date'
and t2.device_id is null;
"
hive -e "$sql"
7.3、创建ADS层表
drop table if exists ads.ads_new_member_cnt;
create table ads.ads_new_member_cnt
(
`cnt` string
)
partitioned by(dt string)
row format delimited fields terminated by ',';
7.4、加载ADS层数据
script/member_active/ads_load_member_add.sh
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_new_member_cnt
partition (dt='$do_date')
select count(1)
from dws.dws_member_add_day
where dt = '$do_date'
"
hive -e "$sql"
7.5、小结
调用脚本次序:
dws_load_member_add_day.sh
ads_load_member_add.sh
第8节 留存会员
留存会员与留存率:某段时间的新增会员,经过一段时间后,仍继续使用应用认为是留存会员;这部分会员占当时新增会员的比例为留存率。
需求:1日、2日、3日的会员留存数和会员留存率
30 | 31 | 1 | 2 | |
10W新会员 | 3W | 1日留存数 | ||
20W | 5W | 2日留存数 | ||
30W | 4W | 3日留存数 |
10W新会员:dws_member_add_day(dt=08-01)明细
3W:特点 在1号是新会员,在2日启动了(2日的启动日志)
dws_member_start_day
8.1、创建DWS层表
-- 会员留存明细
drop table if exists dws.dws_member_retention_day;
create table dws.dws_member_retention_day
(
`device_id` string,
`uid` string,
`app_v` string,
`os_type` string,
`language` string,
`channel` string,
`area` string,
`brand` string,
`add_date` string comment '会员新增时间',
`retention_date` int comment '留存天数'
)COMMENT '每日会员留存明细'
PARTITIONED BY (`dt` string)
stored as parquet;
8.2、加载DWS层数据
script/member_active/dws_load_member_retention_day.sh
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table dws.dws_member_retention_day partition(dt='$do_date')
(
select t2.device_id,
t2.uid,
t2.app_v,
t2.os_type,
t2.language,
t2.channel,
t2.area,
t2.brand,
t2.dt add_date,
1
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -1)
and t1.dt='$do_date'
union all
select t2.device_id,
t2.uid,
t2.app_v,
t2.os_type,
t2.language,
t2.channel,
t2.area,
t2.brand,
t2.dt add_date,
2
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -2)
and t1.dt='$do_date'
union all
select t2.device_id,
t2.uid,
t2.app_v,
t2.os_type,
t2.language,
t2.channel,
t2.area,
t2.brand,
t2.dt add_date,
3
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -3)
and t1.dt='$do_date'
);
"
hive -e "$sql"
return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask
一般是内部错误
1、找日志(hive.log【简略】 / MR的日志【详细】)
hive.log ===> 缺省情况下 /tmp/root/hive.log (hive-site.conf)
MR的日志 ===> 启动historyserver、日志聚合 + SQL运行在集群模式
2、改写SQL
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
drop table if exists tmp.tmp_member_retention;
create table tmp.tmp_member_retention as
(
select t2.device_id,
t2.uid,
t2.app_v,
t2.os_type,
t2.language,
t2.channel,
t2.area,
t2.brand,
t2.dt add_date,1
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -1)
and t1.dt='$do_date'
union all
select t2.device_id,
t2.uid,
t2.app_v,
t2.os_type,
t2.language,
t2.channel,
t2.area,
t2.brand,
t2.dt add_date,2
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -2)
and t1.dt='$do_date'
union all
select t2.device_id,
t2.uid,
t2.app_v,
t2.os_type,
t2.language,
t2.channel,
t2.area,
t2.brand,
t2.dt add_date,3
from dws.dws_member_start_day t1 join dws.dws_member_add_day t2
on t1.device_id=t2.device_id
where t2.dt=date_add('$do_date', -3)
and t1.dt='$do_date'
);
insert overwrite table dws.dws_member_retention_day partition(dt='$do_date')
select * from tmp.tmp_member_retention;
"
hive -e "$sql"
8.3、创建ADS层表
-- 会员留存数
drop table if exists ads.ads_member_retention_count;
create table ads.ads_member_retention_count
(`add_date` string comment '新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数'
) COMMENT '会员留存数'
partitioned by(dt string)
row format delimited fields terminated by ',';
-- 会员留存率
drop table if exists ads.ads_member_retention_rate;
create table ads.ads_member_retention_rate
(`add_date` string comment '新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数',
`new_mid_count` bigint comment '当日会员新增数',
`retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '会员留存率'
partitioned by(dt string)
row format delimited fields terminated by ',';
8.4、加载ADS层数据
script/member_active/ads_load_member_retention.sh
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_member_retention_count partition (dt='$do_date')
select add_date, retention_date,
count(*) retention_count
from dws.dws_member_retention_day
where dt='$do_date'
group by add_date, retention_date;
insert overwrite table ads.ads_member_retention_rate partition (dt='$do_date')
select t1.add_date,
t1.retention_day,
t1.retention_count,
t2.cnt,
t1.retention_count/t2.cnt*100
from ads.ads_member_retention_count t1 join
ads.ads_new_member_cnt t2 on t1.dt=t2.dt
where t1.dt='$do_date';
"
hive -e "$sql"
备注:最后一条SQL的连接条件应为:t1.add_date=t2.dt。在10.4 节中有详细说明。
8.5、小结
会员活跃度--活跃会员数、新增会员、留存会员
脚本调用次序:
# 加载ODS / DWD 层采集
ods_load_startlog.sh
dwd_load_startlog.sh
# 活跃会员
dws_load_member_start.sh
ads_load_member_active.sh
# 新增会员
dws_load_member_add_day.sh
ads_load_member_add.sh
# 会员留存
dws_load_member_retention_day.sh
ads_load_member_retention.sh
第9节 Datax 数据导出
基本概念及安装参见DataX快速入门
ADS有4张表需要从数据仓库的ADS层导入MySQL,即:Hive => MySQL
ads.ads_member_active_count
ads.ads_member_retention_count
ads.ads_member_retention_rate
ads.ads_new_member_cnt
-- MySQL 建表
-- 活跃会员数
create database dwads;
drop table if exists dwads.ads_member_active_count;
create table dwads.ads_member_active_count(
`dt` varchar(10) COMMENT '统计日期',
`day_count` int COMMENT '当日会员数量',
`week_count` int COMMENT '当周会员数量',
`month_count` int COMMENT '当月会员数量',
primary key (dt)
);
-- 新增会员数
drop table if exists dwads.ads_new_member_cnt;
create table dwads.ads_new_member_cnt(
`dt` varchar(10) COMMENT '统计日期',
`cnt` VARCHAR(10),
primary key (dt)
);
-- 会员留存数
drop table if exists dwads.ads_member_retention_count;
create table dwads.ads_member_retention_count
(
`dt` varchar(10) COMMENT '统计日期',
`add_date` VARCHAR(10) comment '新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数'
)
COMMENT '会员留存情况';
-- 会员留存率
drop table if exists dwads.ads_member_retention_rate;
create table dwads.ads_member_retention_rate
(
`dt` varchar(10) COMMENT '统计日期',
`add_date` VARCHAR(10) comment '新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数',
`new_mid_count` bigint comment '当日会员新增数',
`retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '会员留存率';
导出活跃会员数(ads_member_active_count)
export_member_active_count.json
hdfsreader => mysqlwriter
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [{
"reader": {
"name": "hdfsreader",
"parameter": {
"path": "/user/hive/warehouse/ads.db/ads_member_active_count/dt=$do_date/*",
"defaultFS": "hdfs://linux121:9000",
"column": [{
"type": "string",
"value": "$do_date"
}, {
"index": 0,
"type": "string"
},
{
"index": 1,
"type": "string"
},
{
"index": 2,
"type": "string"
}
],
"fileType": "text",
"encoding": "UTF-8",
"fieldDelimiter": ","
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"writeMode": "replace",
"username": "hive",
"password": "12345678",
"column": ["dt", "day_count", "week_count", "month_count"],
"preSql": [
""
],
"connection": [{
"jdbcUrl": "jdbc:mysql://linux123:3306/dwads?useUnicode=true&characterEncoding=utf-8",
"table": [
"ads_member_active_count"
]
}]
}
}
}]
}
}
执行命令:
python datax.py -p "-Ddo_date=2020-08-02" /data/lagoudw/script/member_active/t1.json
export_member_active_count.sh
#!/bin/bash
JSON=/data/lagoudw/script/member_active
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
python $DATAX_HOME/bin/datax.py -p "-Ddo_date=$do_date" $JSON/export_member_active_count.json
其他三张表的数据导出类似!!!