Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:
There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
方法:
见到求字符串极值或子串(子数组)的题目,先考虑动态规划。
其中**dp[i]的意思是以第i个元素结尾(不是指前i个元素)**的最长子序列长度
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(), 1);
int res = 0;
for (int i = 0; i < nums.size(); ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) { //说明nums[i]可以放在nums[j]后面
dp[i] = max(dp[i], dp[j] + 1);
}
}
res = max(res, dp[i]); //更新res,保留每次最长的
}
return res;
}
};