卷积神经网络基础

卷积神经网络基础

本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。

互相关运算与卷积运算
卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

特征图与感受野
二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做的感受野(receptive field)。

填充和步幅
我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

步幅
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。

池化
二维池化层
池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。

内容概要:本文档定义了一个名为 `xxx_SCustSuplier_info` 的视图,用于整合和展示客户(Customer)和供应商(Supplier)的相关信息。视图通过连接多个表来获取组织单位、客户账户、站点使用、位置、财务代码组合等数据。对于客户部分,视图选择了与账单相关的记录,并提取了账单客户ID、账单站点ID、客户名称、账户名称、站点代码、状态、付款条款等信息;对于供应商部分,视图选择了有效的供应商及其站点信息,包括供应商ID、供应商名称、供应商编号、状态、付款条款、财务代码组合等。视图还通过外连接确保即使某些字段为空也能显示相关信息。 适合人群:熟悉Oracle ERP系统,尤其是应付账款(AP)和应收账款(AR)模块的数据库管理员或开发人员;需要查询和管理客户及供应商信息的业务分析师。 使用场景及目标:① 数据库管理员可以通过此视图快速查询客户和供应商的基本信息,包括账单信息、财务代码组合等;② 开发人员可以利用此视图进行报表开发或数据迁移;③ 业务分析师可以使用此视图进行数据分析,如信用评估、付款周期分析等。 阅读建议:由于该视图涉及多个表的复杂连接,建议读者先熟悉各个表的结构和关系,特别是 `hz_parties`、`hz_cust_accounts`、`ap_suppliers` 等核心表。此外,注意视图中使用的外连接(如 `gl_code_combinations_kfv` 表的连接),这可能会影响查询结果的完整性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值