Lesion annotation network (LesaNet)

LesaNet是一个多标签分类CNN,用于预测CT图像中病变的身体部位、类型和属性。利用放射学报告和标签本体学习,提高预测准确性。适用于病变检测、检索和基于内容的图像检索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文再一次初步翻译这篇论文,可以对医学的病灶区域进行检测和检索的一篇最新的paper

在这里插入图片描述
在这里插入图片描述

Hypodense(低密度) <——>Hyperdense(高密度)
论文:https://arxiv.org/abs/1904.04661
代码:https://github.com/phoebe0803/CADLab/tree/master/LesaNet

This project contains the code and labels of the CVPR 2019 oral paper: “Holistic and Comprehensive Annotation of Clinically Significant Findings on Diverse CT Images: Learning from Radiology Reports and Label Ontology” (arXiv).
Developed by Ke Yan (yankethu@gmail.com, yanke23.com), Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, National Institutes of Health Clinical Center.
LesaNet [1] predicts the body part, type, and attributes of a variety of lesions in CT images. It is a multi-label classification CNN. It learns to annotate lesion images by leveraging radiology reports and the relations between labels (ontology).
You can use LesaNet to:

  • Given a lesion image patch, predict the lesion’s body part, type, and attributes;
  • Given a label (e.g., kidney) fin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值