LOJ6280 数列分块入门4

本文详细介绍了一种用于处理区间操作的数列分块算法,包括区间加和区间查询操作。通过实例讲解了如何利用tag[]和sum[]数组进行优化,以减少复杂度并提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


LOJ6280 数列分块入门 4


标签

  • 分块入门

前言


简明题意

  • 维护序列,支持两种操作:
    1. 区间加
    2. 区间查询

思路

  • 多维护一个tag[]和一个sum[]就可以了~

注意事项


总结


AC代码

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;

const int maxn = 1e5 + 10;

int n, a[maxn];
int pos[maxn], len, tag[maxn], sum[maxn];

void change(int l, int r, int c)
{
	for (int i = l; i <= min(len * pos[l], r); i++)
		a[i] += c, sum[pos[i]] += c;

	if (pos[l] != pos[r])
		for (int i = r; i >= len * pos[r] - len + 1; i--)
			a[i] += c, sum[pos[i]] += c;

	for (int i = pos[l] + 1; i <= pos[r] - 1; i++)
		tag[i] += c;
}

int cal(int l, int r, int c)
{
	long long ans = 0;
	for (int i = l; i <= min(len * pos[l], r); i++)
		ans += 1ll * a[i] + tag[pos[i]], ans %= (c + 1);
	
	if (pos[l] != pos[r])
		for (int i = r; i >= len * pos[r] - len + 1; i--)
			ans += 1ll * a[i] + tag[pos[i]], ans %= (c + 1);

	for (int i = pos[l] + 1; i <= pos[r] - 1; i++)
		ans += sum[i] + 1ll * tag[i] * len, ans %= (c + 1);

	return ans;
}

void solve()
{
	scanf("%d", &n);
	len = sqrt(n);
	for (int i = 1; i <= n; i++)
		scanf("%d", &a[i]), pos[i] = (i - 1) / len + 1, sum[pos[i]] += a[i];

	for (int i = 1; i <= n; i++)
	{
		int opt, l, r, c;
		scanf("%d%d%d%d", &opt, &l, &r, &c);
		if (opt == 0)
			change(l, r, c);
		else
			printf("%d\n", cal(l, r, c));
	}
}

int main()
{
	freopen("Testin.txt", "r", stdin);
	//freopen("Testout.txt", "w", stdout);
	solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值