1069 The Black Hole of Numbers (20分)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
参考柳神: https://www.liuchuo.net/archives/2468
#include<iostream>
#include<algorithm>
using namespace std;
bool cmp(char a,char b){
return a>b;
}
int main(){
string s;
cin>>s;
s.insert(0,4-s.length(),'0');
while(1){
string s1=s,s2=s;
sort(s1.begin(),s1.end(),cmp);
sort(s2.begin(),s2.end());
int result=stoi(s1)-stoi(s2);
s=to_string(result);
s.insert(0,4-s.length(),'0');
cout<<s1<<" - "<<s2<<" = "<<s<<endl;
//printf("%04d - %04d = %04d\n",a,b,result);//超时
if(s=="6174"||s=="0000") break;
}
return 0;
}
//另外的方法:
// #include<cstdio>
// #include<algorithm>
// using namespace std;
// void to_array(int a,int num[])
// {
// for(int i=0;i<4;i++)
// {
// num[i]=(a%10);
// a=a/10;
// }
// }
// int to_number(int num[])
// {
// int sum=0;
// for(int i=0;i<4;i++)
// sum=sum*10+num[i];
// return sum;
// }
// bool cmp(int a,int b)
// {
// return a>b;
// }
// int main()
// {
// int n,num[5],max,min;
// scanf("%d",&n);
// while(1)
// {
// to_array(n,num);
// sort(num,num+4);
// min=to_number(num);
// sort(num,num+4,cmp);
// max=to_number(num);
// n=max-min;
// printf("%04d - %04d = %04d\n",max,min,n);
// if(n==0||n==6174) break;
// }
// return 0;
// }