Fast R-CNN损失函数

损失函数

候选框回归原理

那么当bouding box regression工作时,再输入Φ时,回归网络分支的输出就是每个Anchor的平移量和变换尺度 ,显然即可用来修正Anchor位置了。

可以看到其 num_output=36,即经过该卷积输出图像为WxHx36,在caffe blob存储为[1, 4x9, H, W],这里相当于feature maps每个点都有9个anchors,每个anchors又都有4个用于回归的变换量。

回到图8,VGG输出 50x38x512 的特征,对应设置 50x38xk anchors,而RPN输出:

  1. 大小为 50x38x2k 的positive/negative softmax分类特征矩阵
  2. 大小为 50x38x4k 的regression坐标回归特征矩阵

恰好满足RPN完成positive/negative分类+bounding box regression坐标回归.

到此为止我们看到了以下的损失:

  • 区域生成网络判断是否对象的损失
  • 区域生成网络的范围调整参数的损失 (仅针对是对象的范围计算)
  • 标签分类网络判断对象所属分类的损失
  • 标签分类网络的范围调整参数的损失 (仅针对是对象,并且可能性最大的分类计算)

这些损失可以通过 + 合并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值