把某一列分成两列
Syntax: Series.str.split(pat=None, n=-1, expand=False)
Parameters:
pat: String value, separator or delimiter to separate string at.
n: Numbers of max separations to make in a single string, default is -1 which means all.
expand: Boolean value, returns a data frame with different value in different columns if True. Else it returns a series with list of strings.
输入:
# dropping null value columns to avoid errors
data.dropna(inplace = True)
# new data frame with split value columns
new = data["Name"].str.split(" ", n = 1, expand = True) # n=1代表只返回两列(一次split),n=-1代表返回所有列
# making seperate first name column from new data frame
data["First Name"]= new[0]
# making seperate last name column from new data frame
data["Last Name"]= new[1]
# Dropping old Name columns
data.drop(columns =["Name"], inplace = True)
# df display
data
输出:
行选择和列选择
https://www.cnblogs.com/kylinlin/p/5231404.html
sort values
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Sort by the values along either axis
在某一列查找元素
To select rows whose column value equals a scalar, some_value, use ==:
df.loc[df['column_name'] == some_value]
To select rows whose column value is in an iterable, some_values, use isin:
df.loc[df['column_name'].isin(some_values)]
Dataframe 2 list
df[‘a’].tolist()