目标
在本章中, - 我们将了解”Harris Corner Detection”背后的概念。 - 我们将看到以下函数:cv.cornerHarris(),cv.cornerSubPix()
理论
Harris创建了一个分数,基本上是一个等式,它将确定一个窗口是否可以包含一个角。
其中:
因此,这些特征值的值决定了区域是拐角,边缘还是平坦。
当|R|较小,这在λ1和λ2
较小时发生,该区域平坦。
当R<0
时(当λ1>>λ2
时发生,反之亦然),该区域为边。
当R
很大时,这发生在λ1和λ2大且λ1~λ2时,该区域是角。
可以用如下图来表示:
因此,Harris Corner Detection的结果是具有这些分数的灰度图像。合适的阈值可为您提供图像的各个角落。我们将以一个简单的图像来完成它。
Opencv中的harris角点检测
为此,OpenCV具有函数**cv.cornerHarris()。其参数为: - **img - 输入图像,应为灰度和float32类型。 - blockSize - 是拐角检测考虑的邻域大小 - ksize - 使用的Sobel导数的光圈参数。 - k - 等式中的哈里斯检测器自由参数。
请参阅以下示例:
import numpy as np
import cv2 as cv
path = r'D:\Laboratory\Study\Computer Vision\opencv4-python\qipantu.png'
img = cv.imread(path)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
#result用于标记角点,并不重要
dst = cv.dilate(dst,None)
#最佳值的阈值,它可能因图像而异。
img[dst>0.01*dst.max()]=[0,0,255]
cv.imshow('dst',img)
if cv.waitKey(0) & 0xff == 27:
cv.destroyAllWindows()
棋盘图的检测结果如下:
SubPixel精度的转角
有时,你可能需要找到最精确的角落。OpenCV附带了一个函数cv.cornerSubPix(),它进一步细化了以亚像素精度检测到的角落。下面是一个例子。和往常一样,我们需要先找到哈里斯角。然后我们通过这些角的质心(可能在一个角上有一堆像素,我们取它们的质心)来细化它们。Harris角用红色像素标记,精制角用绿色像素标记。对于这个函数,我们必须定义何时停止迭代的条件。我们在特定的迭代次数或达到一定的精度后停止它,无论先发生什么。我们还需要定义它将搜索角落的邻居的大小。
import numpy as np
import cv2 as cv
filename = 'chessboard2.jpg'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 寻找哈里斯角
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
dst = cv.dilate(dst,None)
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# 寻找质心
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# 定义停止和完善拐角的条件
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
# 绘制
res = np.hstack((centroids,corners))
res = np.int0(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]] = [0,255,0]
cv.imwrite('subpixel5.png',img)
结果: