numpy创建数组

本文介绍了numpy库在Python中的使用,重点讲解了如何创建数组(矩阵),包括数据类型的定义,轴的理解,以及如何通过astype方法修改数组数据类型。同时,提到了调整浮点数小数位数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组的操作

  • list ====== 特殊的数组
    数组和列表的区别:
    • 数组: 存储的时同一种数据类型;
    • list:容器, 可以存储任意数据类型;

一维数组和数组的计算:

# 一维数组和数组的计算
a = [1, 2, 3, 4]
b = [2, 3, 4, 5]
# 一维数组相加
add = lambda x: x[0] + x[1]
# [(1,2), (2,3), (3,4), (4,5)]
print([add(item) for item in zip(a, b)])
# 一维数组相乘
mul = lambda x: x[0] * x[1]
# [(1,2), (2,3), (3,4), (4,5)]
print([mul(item) for item in zip(a, b)])

在这里插入图片描述

numpy操作创建数组(矩阵)

NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。

  • Numpy的学习内容:
    • 什么是numpy?
    • numpy基础概念
    • numpy常用的方法
    • numpy常用的统计方法

1) 什么是numpy?

快速, 方便的科学计算基础库(主要时数值的计算, 多维数组的运算);

2)numpy的数据类型:

在这里插入图片描述

3)轴的理解(axis): 0轴, 1轴, 2轴

- 一维数组: [1,2,3,45]    ----0轴
- 二维数组: [[1,2,3,45], [1,2,3,45]]     ----0轴, 1轴,

在这里插入图片描述
在这里插入图片描述

numpy操作

1)、numpy中如何创建数组(矩阵)?

方法1:

a = np.array([1,2,3,4,5])
b = np.array([1,2,3,4,5])
c1 = np.array(range(1,6))
print(a+b)

在这里插入图片描述
方法2:

c1 = np.array(range(1,6))
c2 = np.arange(1,6)
print(c1)
print(c2)

在这里插入图片描述

2)数组及数组元素的类型:

  • 数组:numpy.ndarray
  • 数组元素:
c1 = np.array(range(1,6))
print(type(c1))
print(c1.dtype)

在这里插入图片描述

3). 修改数组的数据类型:astype

numpy的数据类型:
在这里插入图片描述

print(c1.astype('float'))
print(c1.astype('bool'))
print(c1.astype('?'))  # ?是bool类型的代号;

在这里插入图片描述
创建的时候指定数据类型:

print(np.array([1,2,3,4], dtype=np.float))

在这里插入图片描述

4)修改浮点数的小数位数

c3 = np.array([1.234556, 3.45464456, 5.645657567])
print(np.round(c3, 2))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值