1.参数方程
{ x = φ ( t ) y = ψ ( t ) \begin{cases} x=\varphi(t) \\ y=\psi(t) & \text{} \end{cases} {x=φ(t)y=ψ(t)
2.一阶导数
y ′ = d y d x = d y d t ⋅ d t d x = d y d t d x d t y^′= \frac{dy}{dx}= \frac{dy}{dt}·\frac{dt}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} y′=dxdy=dtdy⋅dxdt=dtdxdtdy
3.二阶导数
y ′′ = d 2 y d x 2 = d y ′ d t ⋅ d t d x = d y ′ d t d x d t y^{′′}= \frac{d^2y}{dx^2}= \frac{dy^′}{dt}·\frac{dt}{dx}=\frac{\frac{dy^′}{dt}}{\frac{dx}{dt}} y′′=dx2d2y=dtdy′⋅dxdt=dtdxdtdy′
4.隐函数的求导(一阶)
5.隐函数的求导(二阶)
6.分段函数的求导