e的负jwt次方怎么积分_实变函数 | 勒贝格积分的定义和一些收敛定理

本文详细探讨勒贝格积分的定义,包括简单函数、有界可测函数、非负可测函数及一般可测函数的积分形式。重点介绍了控制收敛定理和法图引理,这些理论允许在特定条件下交换积分与极限。此外,还讨论了单调有界定理在积分中的应用,展示了如何在积分中处理e的负jwt次方这样的函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dab77b993b975f9b931af54d02404516.gif

勒贝格积分的定义分了4个步骤:

For a simple function with canonical form

equation?tex=%5Cvarphi%28x%29%3D%5Csum_%7Bk%3D1%7D%5EM+c_k1_%7BF_k%7D%28x%29 , we define the Lebesgue integral of
equation?tex=%5Cvarphi by
equation?tex=%5Cint_%7BR%5Ed%7D+%5Cvarphi%28x%29dx%3D%5Csum_%7Bk%3D1%7D%5EM+c_km%28F_k%29

【对于简单函数,积分就是把拥有相同权重的那些集合拼到一起,求出面积,再求和】

For a measurable function

equation?tex=f bounded by
equation?tex=M and supported on a set
equation?tex=E of finite measure, we define its Lebesgue integral by
equation?tex=%5Cint+f%3Dlim_%7Bn%5Crightarrow+%5Cinfty%7D%5Cint+%5Cvarphi_n ,where simple functions
equation?tex=%5C%7B%5Cvarphi_n%5C%7D_%7Bn%3D1%7D%5E%7B%5Cinfty%7D are bounded by
equation?tex=M ,supported on
equation?tex=E and
equation?tex=%5Cvarphi_n%28x%29%5Crightarrow+f%28x%29 for a.e.

【定义在有限测度集合上的有界可测函数,它的L积分可以用简单函数来逼近】

For non-negative measurable function

equation?tex=f%3A+R%5Ed+%5Crightarrow+%5B0%2C%5Cinfty%5D+ ,define
equation?tex=%5Cint+f+%3Dsup%5C%7B%5Cint+g%5C%7D ,where the supremum is taken over all measurable functions
equation?tex=g+ s.t.
equation?tex=0%5Cleq+g%5Cleq+f ,and
equation?tex=g is bounded and supported on a set of finite measure.

【非负可测函数的积分可以用有界可测函数来逼近】

For a general measurable function

equation?tex=f%3A+R%5Ed%5Crightarrow+%5B-%5Cinfty%2C+%5Cinfty%5D+ , define
equation?tex=%5Cint+f%3D%5Cint+f%5E%2B-%5Cint+f%5E-

【一般的可测函数,把它分成非负和负两个部分,再组合】


为了能够交换积分与极限的次序,我们有一些工具。

(Bounded convergence theorem)Suppose that
equation?tex=%5C%7Bf_n%5C%7D is a sequence of measurable functions that all bounded by
equation?tex=M , are supported on a set
equation?tex=E of finite measure, and
equation?tex=f_n%5Crightarrow+f a.e. .Then
equation?tex=f is measurable, bounded, supported on
equation?tex=E for a.e.
equation?tex=x , and
equation?tex=%5Cint%7Cf_n-f%7C%5Crightarrow+0 . Consequently,
equation?tex=%5Cint+f_n%5Crightarrow+%5Cint+f .

【控制收敛定理主要是在说,如果我们能够为我们的目标函数找到一个定义在有限可测集上的有界可测函数序列,并且这个函数序列是几乎处处收敛于我们的目标函数的,那么,我们的目标函数也是几乎处处可测的,有界的,定义在有限可测集上的,并且,目标函数的勒贝格积分就是函数列积分的极限。换句话说,在这么多的限制条件下,我们可以交换积分与极限的顺序。】

equation?tex=f_n%28x%29%3Dn1_%7B0%3Cx%3C%5Cfrac%7B1%7D%7Bn%7D%7D ,虽然
equation?tex=f%28x%29%5Crightarrow+0 对所有的
equation?tex=x 都成立,但
equation?tex=%5Clim%5Cint+f_n%3D1%5Cnot+%3D%5Cint+0 。原因是
equation?tex=f_n%28x%29 非bounded】
(Fatou) Suppose
equation?tex=0%5Cleq+f_n , and
equation?tex=f_n%5Crightarrow+f a.e., then
equation?tex=%5Cint+f+%5Cleq+%5Climinf_%7Bn%5Crightarrow%5Cinfty%7D%5Cint+f_n .

【法图引理为积分提供了一个上界,这个上界来自于一个几乎处处收敛于目标函数的非负函数序列。】

证明如下

equation?tex=0%5Cleq+g%5Cleq+f ,where
equation?tex=g is
bounded and supported on a set
equation?tex=E with
equation?tex=m%28E%29%3C%5Cinfty 。 接着我们令
equation?tex=g_n%28x%29%3D%5Cmin+%5C%7Bg%28x%29%2Cf_n%28x%29%5C%7D ,那么
equation?tex=g_n是可测的, bounded, supported on
equation?tex=E,并且
equation?tex=g_n%28x%29%5Crightarrow+g%28x%29 a.e., 那么根据上边的控制收敛定理,我们有
equation?tex=%5Cint+g_n%5Crightarrow+%5Cint+g 。又因为
equation?tex=g_n%5Cleq+f_n%2C 那么
equation?tex=%5Cint+g+%3D%5Clim_%7Bn%5Crightarrow%5Cinfty%7D%5Cint+g_n%5Cleq%5Climinf_%7Bn%5Crightarrow%5Cinfty%7D%5Cint+f_n 。接着根据勒贝格积分定义的第三步,我们take the supremum over all
equation?tex=g ,可以得到
equation?tex=%5Cint+f+%5Cleq+%5Climinf_%7Bn%5Crightarrow%5Cinfty%7D%5Cint+f_n
(Monotone convergence theorem) Suppose measurable functions
equation?tex=0%5Cleq+f_n%5Cuparrow+f a.e., then
equation?tex=%5Clim_%7Bn%5Crightarrow+%5Cinfty%7D%5Cint+f_n%3D%5Cint+f

【这里仅仅是比法图引理多了一个单调递增的条件,我们便可以交换积分和极限的次序了。因为由法图引理我们可以得到一个上界,我们再对

equation?tex=f_n 的积分 take limsup,又可以得到一个下界,于是得到我们的结论。】

【个人感觉和数分里的单调有界定理有点像。】

(Borel-Cantelli lemma)
equation?tex=E_1%2CE_2%2C...+ is a collection of measurable subsets with
equation?tex=%5Csum+m%28E_k%29%3C%5Cinfty . Then
equation?tex=m%28%5Climsup_%7Bn%5Crightarrow+%5Cinfty%7DE_k%29%3D0.

这个定理在说,如果一系列的可测集测度之和是有限的,那么那些存在于无限多个集合里的点的测度为零。

我们记

equation?tex=a_k%28x%29%3D1_%7BE_k%7D%28x%29%2C 那么
equation?tex=x+%5Cin+%5Climsup_%7Bn%5Crightarrow+%5Cinfty%7DE_k+ 当且仅当
equation?tex=%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D+a_k%28x%29%3D%5Cinfty。因为
equation?tex=%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D+%5Cint+a_k%28x%29dx%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7Dm%28E_k%29%3C%5Cinfty,于是有
equation?tex=%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7Da_k%28x%29%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D1_%7BE_k%7D%28x%29%3C%5Cinfty
equation?tex=a.e.%2C
equation?tex=m%28%5Climsup_%7Bn%5Crightarrow+%5Cinfty%7DE_k%29%3D0

【例: 在

equation?tex=R%5Ed 上,当
equation?tex=x+%5Cnot+%3D0 ,有
equation?tex=f%28x%29%3D%5Cfrac%7B1%7D%7B%7B%7Cx%7C%7D%5E%7Bd%2B1%7D%7D ,当
equation?tex=x%3D0 ,有
equation?tex=f%28x%29%3D0 。于是存在一个
equation?tex=C ,使得对任意的
equation?tex=%5Cepsilon%3E0 ,有
equation?tex=%5Cint_%7B%7Cx%7C%3E%5Cepsilon%7Df%28x%29dx%5Cleq+%5Cfrac%7BC%7D%7B%5Cepsilon%7D

证明:我们首先来分割

equation?tex=x 的值域, 令
equation?tex=A_k%3D%5C%7Bx%5Cin+R%5Ed%3A+2%5Ek%5Cepsilon%3C%7Cx%7C%5Cleq2%5E%7Bk%2B1%7D%5Cepsilon%5C%7D ,令
equation?tex=a_k%28x%29
equation?tex=%3D%282%5Ek%5Cepsilon%29%5E%7B-1-d%7D ,
equation?tex=g%28x%29%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7Da_k%28x%29 ,那么显然有
equation?tex=f%28x%29%5Cleq+g%28x%29
equation?tex=%5C%7Bx%5Cin+R%5Ed%3A+%7Cx%7C%3E%5Cepsilon%5C%7D 上成立,因此有
equation?tex=%5Cint+f+%5Cleq+%5Cint+g 。我们记
equation?tex=A%3D%5C%7Bx%5Cin+R%5Ed%3A+1%3C%7Cx%7C%5Cleq+2%5C%7D ,由于
equation?tex=A_k%3D2%5Ek%5Cepsilon+A
equation?tex=m%28A_k%29%3D%282%5Ek%5Cepsilon%29%5Edm%28A%29 ,于是有
equation?tex=%5Cint+g%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cint_%7BA_k%7Dg%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bm%28A_k%29%7D%7B2%5E%7Bk%2B1%7D%5Cepsilon%7D%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%282%5Ek%5Cepsilon%29%5Edm%28A%29%7D%7B%282%5E%7Bk%2B1%7D%5Cepsilon%29%5E%7Bd%2B1%7D%7D%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bm%28A%29%7D%7B2%5Ek%5Cepsilon%7D%3D%5Cfrac%7B2m%28A%29%7D%7B%5Cepsilon%7D
(Dominated Convergence Theorem) Suppose
equation?tex=%5C%7Bf_n%5C%7D is a sequence of measurable functions s.t.
equation?tex=f_n%5Crightarrow+f%5Cquad+a.e.. If
equation?tex=%7Cf_n%28x%29%7C%5Cleq+g%28x%29%5Cin+L%5E1%28R%5Ed%29%5Cquad+a.e.+%2C then
equation?tex=%5Clim_%7Bn%5Crightarrow+%5Cinfty%7D%5Cint+f_n%3D%5Cint+f .

equation?tex=%5CDelta+f_n%28x%29%3D%7Cf_n%28x%29-f%28x%29%7C%5Crightarrow+0+a.e.. 因为
equation?tex=%5CDelta+f_n%5Cleq+2g ,我们有
equation?tex=2g-%5CDelta+f_n%5Cgeq+0 。所以我们有
equation?tex=%5Cint+2g%3D%5Cint+%5Climinf_%7Bn%5Crightarrow%5Cinfty%7D%282g-%5CDelta+f_n%29%5Cleq+%5Climinf_%7Bn%5Crightarrow+%5Cinfty%7D%5Cint+%282g-%5CDelta+f_n%29%3D%5Cint+2g-%5Climsup_%7Bn%5Crightarrow+%5Cinfty%7D%5Cint%5CDelta+f_n%5CRightarrow+%5Climsup_%7Bn%5Crightarrow+%5Cinfty%7D%5Cint+%5CDelta+f_n+%5Cleq+0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值