import tensorflow as tf
import numpy as np
### create data ###
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3 # 实际y
### crate tensorflow structure start ###
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights * x_data + biases # 预测y
loss = tf.reduce_mean(tf.square(y - y_data)) # loss
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
### crate tensorflow structure end ###
sess = tf.Session()
sess.run(init) # Very important!
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
Tensorflow学习--test1
最新推荐文章于 2024-06-25 04:19:29 发布