CUDA学习笔记(四)线程协作

CUDA线程协作

教材《GPU高性能编程CUDA实战》第五章 线程协作 

一、并行线程块的分解

1.矢量求和:使用线程实现GPU上的矢量求和

//重新回顾矢量求和 : 一个线程块N个线程
#include "book.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"//包含blockIdx.x
#define N   10

__global__ void add( int *a, int *b, int *c ) {
    int tid = threadIdx.x;//线程索引
    if (tid < N)
        c[tid] = a[tid] + b[tid];
}

int main( void ) {
    int a[N], b[N], c[N];
    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // fill the arrays 'a' and 'b' on the CPU
    for (int i=0; i<N; i++) {
        a[i] = i;
        b[i] = i * i;
    }

    // copy the arrays 'a' and 'b' to the GPU
    HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int),cudaMemcpyHostToDevice ) );
    HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int),cudaMemcpyHostToDevice ) );

    add<<<1,N>>>( dev_a, dev_b, dev_c );//1个线程块N个线程

    // copy the array 'c' back from the GPU to the CPU
    HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),cudaMemcpyDeviceToHost ) );

    // display the results
    for (int i=0; i<N; i++) {
        printf( "%d + %d = %d\n", a[i], b[i], c[i] );
    }

    // free the memory allocated on the GPU
    HANDLE_ERROR( cudaFree( dev_a ) );
    HANDLE_ERROR( cudaFree( dev_b ) );
    HANDLE_ERROR( cudaFree( dev_c ) );

    return 0;
}

2.在GPU上对任意长度的矢量求和

//在GPU上任意长度的矢量求和
#include "book.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"//包含blockIdx.x
#define N   (33 * 1024)

__global__ void add( int *a, int *b, int *c ) {
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += blockDim.x * gridDim.x;
		//递增的步长是线程格中正在运行的线程数量=线程块中的线程数量*线程格中的线程块数量
    }
}

int main( void ) {
    int *a, *b, *c;
    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the CPU
    a = (int*)malloc( N * sizeof(int) );
    b = (int*)malloc( N * sizeof(int) );
    c = (int*)malloc( N * sizeof(int) );

    // allocate the memory on the GPU
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // fill the arrays 'a' and 'b' on the CPU
    for (int i=0; i<N; i++) {
        a[i] = i;
        b[i] = 2 * i;
    }

    // copy the arrays 'a' and 'b' to the GPU
    HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int),cudaMemcpyHostToDevice ) );
    HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int),cudaMemcpyHostToDevice ) );

    add<<<128,128>>>( dev_a, dev_b, dev_c );

    // copy the array 'c' back from the GPU to the CPU
    HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),cudaMemcpyDeviceToHost ) );

    // verify that the GPU did the work we requested
    bool success = true;
    for (int i=0; i<N; i++) {
        if ((a[i] + b[i]) != c[i]) {
            printf( "Error:  %d + %d != %d\n", a[i], b[i], c[i] );
            success = false;
        }
    }
    if (success)    printf( "We did it!\n" );

    // free the memory we allocated on the GPU
    HANDLE_ERROR( cudaFree( dev_a ) );
    HANDLE_ERROR( cudaFree( dev_b ) );
    HANDLE_ERROR( cudaFree( dev_c ) );

    // free the memory we allocated on the CPU
    free( a );
    free( b );
    free( c );

    return 0;
}

3.在GPU上使用线程实现波纹效果

#include "book.h"
#include "cpu_anim.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"//包含blockIdx.x

#define DIM 1024
#define PI 3.1415926535897932f

__global__ void kernel( unsigned char *ptr, int ticks ) {
    // map from threadIdx/BlockIdx to pixel position
	//x,y是线程在线程块中的索引转换成在图形中的唯一索引
    int x = threadIdx.x + blockIdx.x * blockDim.x;
    int y = threadIdx.y + blockIdx.y * blockDim.y;
	//对x和y进行线性化,从二维索引空间转到线性空间
    int offset = x + y * blockDim.x * gridDim.x;

    // now calculate the value at that position
    float fx = x - DIM/2;
    float fy = y - DIM/2;
    float d = sqrtf( fx * fx + fy * fy );
    unsigned char grey = (unsigned char)(128.0f + 127.0f * cos(d/10.0f - ticks/7.0f) /(d/10.0f + 1.0f));    
    ptr[offset*4 + 0] = grey;
    ptr[offset*4 + 1] = grey;
    ptr[offset*4 + 2] = grey;
    ptr[offset*4 + 3] = 255;
}

struct DataBlock {
    unsigned char   *dev_bitmap;
    CPUAnimBitmap  *bitmap;
};

void generate_frame( DataBlock *d, int ticks ) {
    dim3    blocks(DIM/16,DIM/16);
    dim3    threads(16,16);
    kernel<<<blocks,threads>>>( d->dev_bitmap, ticks );

    HANDLE_ERROR( cudaMemcpy( d->bitmap->get_ptr(),d->dev_bitmap,d->bitmap->image_size(),cudaMemcpyDeviceToHost ) );
}

// clean up memory allocated on the GPU
void cleanup( DataBlock *d ) {
    HANDLE_ERROR( cudaFree( d->dev_bitmap ) ); 
}

int main( void ) {
    DataBlock   data;
    CPUAnimBitmap  bitmap( DIM, DIM, &data );
    data.bitmap = &bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_bitmap,bitmap.image_size() ) );

    bitmap.anim_and_exit( (void (*)(void*,int))generate_frame, (void (*)(void*))cleanup );
}

波纹效果图:

 二、共享内存和线程同步

1.点积计算

#include "book.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"//包含blockIdx.x

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid =imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );

__global__ void dot( float *a, float *b, float *c ) {
    __shared__ float cache[threadsPerBlock];
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    int cacheIndex = threadIdx.x;

    float   temp = 0;
    while (tid < N) {
        temp += a[tid] * b[tid];
        tid += blockDim.x * gridDim.x;
    }
   
    // set the cache values
    cache[cacheIndex] = temp;
    
    // synchronize threads in this block
    __syncthreads();//报红是因为vs没有识别,不用管

    // for reductions, threadsPerBlock must be a power of 2
    // because of the following code
    int i = blockDim.x/2;
    while (i != 0) {
        if (cacheIndex < i)
            cache[cacheIndex] += cache[cacheIndex + i];
        __syncthreads();
        i /= 2;
    }

    if (cacheIndex == 0)
        c[blockIdx.x] = cache[0];
}

int main( void ) {
    float   *a, *b, c, *partial_c;
    float   *dev_a, *dev_b, *dev_partial_c;

    // allocate memory on the cpu side
    a = (float*)malloc( N*sizeof(float) );
    b = (float*)malloc( N*sizeof(float) );
    partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );

    // allocate the memory on the GPU
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N*sizeof(float) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N*sizeof(float) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c, blocksPerGrid*sizeof(float) ) );

    // fill in the host memory with data
    for (int i=0; i<N; i++) {
        a[i] = i;
        b[i] = i*2;
    }

    // copy the arrays 'a' and 'b' to the GPU
    HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),cudaMemcpyHostToDevice ) );
    HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice ) ); 

    dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b,dev_partial_c );

    // copy the array 'c' back from the GPU to the CPU
    HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,blocksPerGrid*sizeof(float),cudaMemcpyDeviceToHost ) );

    // finish up on the CPU side
    c = 0;
    for (int i=0; i<blocksPerGrid; i++) {
        c += partial_c[i];
    }

    #define sum_squares(x)  (x*(x+1)*(2*x+1)/6)
    printf( "Does GPU value %.6g = %.6g?\n", c,2 * sum_squares( (float)(N - 1) ) );

    // free memory on the gpu side
    HANDLE_ERROR( cudaFree( dev_a ) );
    HANDLE_ERROR( cudaFree( dev_b ) );
    HANDLE_ERROR( cudaFree( dev_partial_c ) );

    // free memory on the cpu side
    free( a );
    free( b );
    free( partial_c );
}

编译运行: 

2.基于共享内存的位图

#include "book.h"
#include "cpu_bitmap.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"//包含blockIdx.x

#define DIM 1024
#define PI 3.1415926535897932f

__global__ void kernel( unsigned char *ptr ) {
    // map from threadIdx/BlockIdx to pixel position
    int x = threadIdx.x + blockIdx.x * blockDim.x;
    int y = threadIdx.y + blockIdx.y * blockDim.y;
    int offset = x + y * blockDim.x * gridDim.x;

    __shared__ float    shared[16][16];

    // now calculate the value at that position
    const float period = 128.0f;

    shared[threadIdx.x][threadIdx.y] = 255 * (sinf(x*2.0f*PI/ period) + 1.0f) *(sinf(y*2.0f*PI/ period) + 1.0f) / 4.0f;

    // removing this syncthreads shows graphically what happens
    // when it doesn't exist.  this is an example of why we need it.
    __syncthreads();//线程同步

    ptr[offset*4 + 0] = 0;
    ptr[offset*4 + 1] = shared[15-threadIdx.x][15-threadIdx.y];
    ptr[offset*4 + 2] = 0;
    ptr[offset*4 + 3] = 255;
}

// globals needed by the update routine
struct DataBlock {
    unsigned char   *dev_bitmap;
};

int main( void ) {
    DataBlock   data;
    CPUBitmap bitmap( DIM, DIM, &data );
    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,bitmap.image_size() ) );
    data.dev_bitmap = dev_bitmap;

    dim3    grids(DIM/16,DIM/16);
    dim3    threads(16,16);
    kernel<<<grids,threads>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,bitmap.image_size(),cudaMemcpyDeviceToHost ) );
                              
    HANDLE_ERROR( cudaFree( dev_bitmap ) );
                              
    bitmap.display_and_exit();
}

 不加__syncthreads()的运行效果:

加了__syncthreads()的运行效果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值