Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<string.h>
using namespace std;
int cnt[10]={0};
int cnt2[10]={0};
char input[22];int len;
int s[22]={0};
int ans1[25]={0};
char ans2[22];int cur;
void add(int s1[],int s2[])
{
for(int i=0;i<len;i++)
{
int t=s1[i]+s2[i];
if(t>=10){
t=t-10;
ans1[i]+=t;
ans1[i+1]+=1;if(i+1>cur)cur=i+1;
}
else{
ans1[i]+=t;if(i>cur)cur=i;
}
}
}
int main(){
scanf("%s",&input);
for(int i=0;i<strlen(input);i++)
{
int t=input[i]-'0';
cnt[t]++;
}
len=strlen(input);int j=0;
for(int i=strlen(input)-1;i>=0;i--)
{
s[j++]=input[i]-'0';
}
/* for(int i=0;i<len;i++)
{
cout<<s[i];
}*/
add(s,s);
for(int i=0;i<=cur;i++)
{
// printf("%d",ans1[i]);
cnt2[ans1[i]]++;
}int flag=1;
for(int i=0;i<10;i++)
{
if(cnt[i]!=cnt2[i])flag=0;
}
if(flag==0)printf("No\n");
else printf("Yes\n");
for(int i=cur;i>=0;i--)
{
printf("%d",ans1[i]);
}
}