keras输出中间层特征值

import tensorflow as tf
from tensorflow.keras import datasets,layers,models
import matplotlib.pyplot as plt
import numpy as np
(train_images,train_labels),(test_images,test_labels) = datasets.cifar10.load_data()

train_images,test_images = train_images/255.0,test_images/255.0
print(train_images[0].shape)
print(train_labels.shape)
class_names = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','druck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.imshow(train_images[i])
    plt.xlabel(class_names[train_labels[i][0]])
#plt.show()

def create_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=(32,32,3)))
    model.add(layers.MaxPool2D(2,2))
    model.add(layers.Conv2D(64,(3,3),activation='relu'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值