HashMap的实现原理理解

本文详细解析了HashMap的工作原理,包括如何通过散列函数确定数组索引、解决哈希冲突的方法、put和get操作的具体流程,以及JDK 1.8中引入的红黑树优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

HashMap的存取实现

 

1.确定数组index:hashcode % table.length取模

// 存储时:
int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index = hash % Entry[].length;
Entry[index] = value;

// 取值时:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index];

 

2.put原理:

 public V put(K key, V value) {

        if (key == null)

            return putForNullKey(value); //null总是放在数组的第一个链表中

        int hash = hash(key.hashCode());

        int i = indexFor(hash, table.length);

        //遍历链表

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {

            Object k;

            //如果key在链表中已存在,则替换为新value

            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

        modCount++;

        addEntry(hash, key, value, i);

        return null;

    }

 

void addEntry(int hash, K key, V value, int bucketIndex) {

    Entry<K,V> e = table[bucketIndex];

    table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next

    //如果size超过threshold,则扩充table大小。再散列

    if (size++ >= threshold)

            resize(2 * table.length);

}

       可以看到,在put的过程中我们先计算出要插入的键值对要存入的位置index,不同的key也可能出现index相同(假设index=1),这个时候我们就要在对比下新插入的(k1,v1)中的k1是否和原来index=1的位置上的键值对(k,v)的键相同(k.equals(k1)),

如果相同,(k1,v1)将覆盖(k,v),如果不相同,(k1,v1)将会添加到链头位置

 

3.get()原理:

         先计算出要查询的键值对的存入位置index,然后遍历该位置上的链表。

private V putForNullKey(V value) {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

        modCount++;

        addEntry(0, null, value, 0);

        return null;

    }

 

    private V getForNullKey() {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null)

                return e.value;

        }

        return null;

    }

 

 

4.解决hash冲突的办法

         Java中hashmap的解决办法就是采用的链地址法。

 

 

5.JDK1.8中HashMap的性能优化

        JDK1.8在JDK1.7的基础上针对一个链上数据过多(即拉链过长的情况)导致性能下降,增加了红黑树来进行优化。即当链表超过8时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。

 

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
内存分区情况的分析是嵌入式系统开发中的一个重要环节,特别是在资源有限的MCU(微控制器)环境中。标题提到的工具是一款专为分析Linux环境下的`gcc-map`文件设计的工具,这文件在编译过程结束后生成,包含了程序在目标设备内存中的布局信息。这个工具可以帮助开发者理解程序在RAM、ROM以及FLASH等存储区域的占用情况,从而进行优化。 `gcc-map`文件通常包含以下关键信息: 1. **符号表**:列出所有定义的全局和静态变量、函数以及其他符号,包括它们的地址和大小。 2. **节区分配**:显示每个代码和数据节区在内存中的位置,比如.text(代码)、.data(已初始化数据)、.bss(未初始化数据)等。 3. **内存汇总**:总览所有节区的大小,有助于评估程序的整体内存需求。 4. **重定位信息**:显示了代码和数据如何在目标地址空间中定位。 该分析工具可能提供以下功能: 1. **可视化展示**:将内存分配以图形化方式呈现,便于直观理解。 2. **详细报告**:生成详细的分析报告,列出每个符号的大小和位置。 3. **比较功能**:对比不同编译版本或配置的`map`文件,查看内存使用的变化。 4. **统计分析**:计算各种内存区域的使用率,帮助识别潜在的优化点。 5. **自定义过滤**:允许用户根据需要筛选和关注特定的符号或节区。 虽然在MCU环境中,Keil IDE自带的工具可能更方便,因为它们通常针对特定的MCU型号进行了优化,提供更加细致的硬件相关分析。然而,对于通用的Linux系统或跨平台项目,这款基于`gcc-map`的分析工具提供了更广泛的适用性。 在实际使用过程中,开发者可以利用这款工具来: - **优化内存使用**:通过分析哪些函数或数据占用过多的内存,进行代码重构或调整链接器脚本以减小体积。 - **排查内存泄漏**:结合其他工具,比如动态内存检测工具,查找可能导致内存泄漏的部分。 - **性能调优**:了解代码执行时的内存分布,有助于提高运行效率。 - **满足资源限制**:在嵌入式系统中,确保程序能在有限的内存空间内运行。 总结来说,`gcc-amap`这样的工具对于深入理解程序的内存布局和资源消耗至关重要,它能帮助开发者做出更明智的决策,优化代码以适应不同的硬件环境。在处理`map`文件时,开发者不仅能获取到程序的内存占用情况,还能进一步挖掘出可能的优化空间,从而提升系统的整体性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值