#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# @Time : 2020/2/25 下午12:43
# @Author : MJ
import torch as t
import torch.nn as nn
import math
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.nn import functional as F
import torch.optim as optim
import torchvision as tv
# from torch.autograd import Variable
#define model
class VGG(nn.Module):
def __init__(self,features,num_classes=10):
super(VGG, self).__init__()
# 网络结构(仅包含卷积层和池化层,不包含分类器)
self.features = features
self.classifer = nn.Sequential(
#fc6
nn.Linear(512,4096),
nn.ReLU(),
nn.Dropout(),
#fc7
nn.Linear(4096,4096),
nn.ReLU(),
nn.Dropout(),
#fc8
nn.Linear(4096,num_classes))
#初始化权重
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0),-1)
x =self.classifer(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m,nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0,math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m,nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m,nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
#生成网络每层的信息
def _make_layers(cfg,batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2,stride=2)]
else:
#设定卷积层的输出数量
conv2d = nn.Conv2d(in_channels,v,kernel_size=3,padding=1)
if batch_norm:
layers += [conv2d,nn.BatchNorm2d(v),nn.ReLU(inplace=True)]
else:
layers += [conv2d,nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg11(**kwargs):
model = VGG(_make_layers(cfg['A']),**kwargs)
return model
def vgg11_bn(**kwargs):
model = VGG(_make_layers(cfg['A'],batch_norm=True),**kwargs)
return model
def vgg13(**kwargs):
model = VGG(_make_layers(cfg['B']), **kwargs)
return model
def vgg13_bn(**kwargs):
model = VGG(_make_layers(cfg['B'], batch_norm=True), **kwargs)
return model
def vgg16(**kwargs):
model = VGG(_make_layers(cfg['D']), **kwargs)
return model
def vgg16_bn(**kwargs):
model = VGG(_make_layers(cfg['D'], batch_norm=True), **kwargs)
return model
def vgg19(**kwargs):
model = VGG(_make_layers(cfg['E']), **kwargs)
return model
def vgg19_bn(**kwargs):
model = VGG(_make_layers(cfg['E'], batch_norm=True), **kwargs)
return model
#dataset function
def getData(BATCH_SIZE):
transform_train = transforms.Compose([
transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.459,0.467],std=[0.229,0.224,0.199]),])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.495,0.512],std=[0.223,0.193,0.231]),])
train_set = tv.datasets.CIFAR10(root='data/',train=True,transform=transform_train,download=True)
train_loader = t.utils.data.DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)
test_set = tv.datasets.CIFAR10(root='data/',train=False,transform=transform_test,download=True)
test_loader = t.utils.data.DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return train_loader, test_loader, classes
#train function
def train(model,epoch,criterion,optimizer,data_loader):
model.train()
for batch_idx, (data,target) in enumerate(data_loader):
model.cuda()
data,target = Variable(data.cuda()),Variable(target.cuda())
output = model(data)
optimizer.zero_grad()
loss = criterion(output,target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 400 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, (batch_idx + 1) * len(data), len(data_loader.dataset),
100. * (batch_idx + 1) / len(data_loader), loss.data.item()))
# test function
def test(model,epoch,criterion,data_loader):
model.eval()
test_loss = 0
correct = 0
for data, target in data_loader:
model.cuda()
data, target = Variable(data.cuda()),Variable(target.cuda())
output = model(data)
test_loss += criterion(output,target)
pred = output.data.max(1)[1]
correct += pred.eq(target.data).cpu().sum()
test_loss /= len(data_loader) # loss function already averages over batch size
acc = correct / len(data_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(data_loader.dataset), 100. * acc))
return acc, test_loss
def defineModel():
#define some hyperparameter
BATCH_SIZE = 64
LEARNING_RATE = 0.001
NUM_EPOCHS = 5
model = vgg16()
model.cuda()
criterion = nn.CrossEntropyLoss()
criterion.cuda()
optimizer = optim.Adam(model.parameters(),lr=LEARNING_RATE)
return model, criterion, optimizer,NUM_EPOCHS, BATCH_SIZE
def mainfunction():
model, criterion, optimizer, NUM_EPOCHS, BATCH_SIZE = defineModel()
train_loader, test_loader, _ = getData(BATCH_SIZE)
print("Training Model")
print(model)
for epoch in range(1, NUM_EPOCHS):
train(model, epoch, criterion, optimizer, train_loader)
with t.no_grad():
acc, loss = test(model, 1, criterion, test_loader)
t.save(model.state_dict(), 'checkpoints/VGG-001_net.t7')
if __name__ == '__main__':
mainfunction()
参考:https://blog.youkuaiyun.com/zhanghao3389/article/details/85038252