问题一:安装 torch GPU版本
由于pip安装太慢
阿里云下载对应cuda版本的 torch 包 阿里云镜像站
安装本地下载的 torch 包
pip install C:\Users\xxx\Downloads\torch-2.2.2+cu118-cp310-cp310-win_amd64.whl
问题二:RuntimeError: “triu_tril_cuda_template“ not implemented for ‘BFloat16‘
官方requirements中版本
torch==2.0.1
将版本替换
torch==2.2.2
下载对应的 torch GPU包安装即可
运行示例
import torch
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
if __name__ == '__main__':
# 指定模型路径
model_path = "../Janus-Pro-1B"
# 加载VLChatProcessor
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
# 加载分词器
tokenizer = vl_chat_processor.tokenizer
# 加载vl_gpt
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
image = "./pic.png"
# question = "explain this meme"
question = "这张图片有什么?"
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{"role": "<|Assistant|>", "content": ""},
]
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# # run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
print(inputs_embeds)
# # run the model to get the response
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)