本文就针对SSD自带的c++例程进行修改。可以对图片或者视频进行测试,具体代码如下所示:
源程序ssd_detect_log.cpp
// This is a demo code for using a SSD model to do detection.
// The code is modified from examples/cpp_classification/classification.cpp.
// Usage:
// ssd_detect [FLAGS] model_file weights_file list_file
//
// where model_file is the .prototxt file defining the network architecture, and
// weights_file is the .caffemodel file containing the network parameters, and
// list_file contains a list of image files with the format as follows:
// folder/img1.JPEG
// folder/img2.JPEG
// list_file can also contain a list of video files with the format as follows:
// folder/video1.mp4
// folder/video2.mp4
//
#include <caffe/caffe.hpp>
//#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv2/core/types_c.h>
//#endif // USE_OPENCV
#include <algorithm>
#include <iomanip>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <iostream>
#include <fstream>
#include <log4cxx/logger.h>
#include <log4cxx/logstring.h>
#include <log4cxx/propertyconfigurator.h>
#include <time.h>
//#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using namespace log4cxx ;
class Detector {
public:
Detector(const string& model_file,
const string& weights_file,
const string& mean_file,
const string& mean_value);
std::vector<vector<float> > Detect(const cv::Mat& img);
private:
void SetMean(const string& mean_file, const string& mean_value);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
};
Detector::Detector(const string& model_file,
const string& weights_file,
const string& mean_file,
const string& mean_value) {
//#ifdef CPU_ONLY
// Caffe::set_mode(Caffe::CPU);
//#else
Caffe::set_mode(Caffe::GPU);
//#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(weights_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file, mean_value);
}
std::vector<vector<float> > Detector::Detect(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob<float>* result_blob = net_->output_blobs()[0];
const float* result = result_blob->cpu_data();
const int num_det = result_blob->height();
vector<vector<float> > detections;
for (int k = 0; k < num_det; ++k) {
if (result[0] == -1) {
// Skip invalid detection.
result += 7;
continue;
}
vector<float> detection(result, result + 7);
detections.push_back(detection);
result += 7;
}
return detections;
}
/* Load the mean file in binaryproto format. */
void Detector::SetMean(const string& mean_file, const string& mean_value) {
cv::Scalar channel_mean;
if (!mean_file.empty()) {
CHECK(mean_value.empty()) <<
"Cannot specify mean_file and mean_value at the same time";
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
if (!mean_value.empty()) {
CHECK(mean_file.empty()) <<
"Cannot specify mean_file and mean_value at the same time";
stringstream ss(mean_value);
vector<float> values;
string item;
while (getline(ss, item, ',')) {
float value = std::atof(item.c_str());
values.push_back(value);
}
CHECK(values.size() == 1 || values.size() == num_channels_) <<
"Specify either 1 mean_value or as many as channels: " << num_channels_;
std::vector<cv::Mat> channels;
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(input_geometry_.height, input_geometry_.width, CV_32FC1,
cv::Scalar(values[i]));
channels.push_back(channel);
}
cv::merge(channels, mean_);
}
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Detector::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Detector::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
DEFINE_string(mean_file, "",
"The mean file used to subtract from the input image.");
DEFINE_string(mean_value, "104,117,123",
"If specified, can be one value or can be same as image channels"
" - would subtract from the corresponding channel). Separated by ','."
"Either mean_file or mean_value should be provided, not both.");
DEFINE_string(file_type, "video",
"The file type in the list_file. Currently support image and video.");
DEFINE_string(out_file, "",
"If provided, store the detection results in the out_file.");
DEFINE_double(confidence_threshold, 0.5,
"Only store detections with score higher than the threshold.");
/*
name:void show_detect_result(IplImage *_img, std::vector<vector<float> > & _detect_result,float confidence_threshold )
function:to draw the detected result on the original picture
input_parameter:
_mat:the point for original picture
_detect_result:the cite for detection result
output_parameter:
None
author:wenqiang zhou
*/
void show_detect_result(IplImage *_img , std::vector<vector<float> > & _detect_result,float confidence_threshold )
{
if(_img==NULL)
return ;
CvFont font;
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 0.5, 0.5, 0, 1, 2);
for (int i = 0; i < _detect_result.size(); ++i) {
const vector<float>& d = _detect_result[i];
// Detection format: [image_id, label, score, xmin, ymin, xmax, ymax].
CHECK_EQ(d.size(), 7);
const int label = d[1] ;
const float score = d[2];
if (score >= confidence_threshold) {
cv::Point Pmin(static_cast<int>(d[3] * _img->width),static_cast<int>(d[4] * _img->height));
cv::Point Pmax(static_cast<int>(d[5] * _img->width),static_cast<int>(d[6] * _img->height));
cvRectangle(_img,Pmin,Pmax,cv::Scalar(0,0,255),1);
char label_score[20];
sprintf(label_score,"%d-%f",label,score);
cvPutText(_img,label_score, cv::Point(static_cast<int>(d[3] * _img->width),static_cast<int>(d[4] * _img->width)), &font, CV_RGB(255,0,0));
}
}
}
int main(int argc, char** argv) {
//configure the glog
PropertyConfigurator::configure("conf.log");
//create two log for project
LoggerPtr logger_output = Logger::getLogger("out_put");
LOG4CXX_TRACE(logger_output,"TRACE");
LOG4CXX_WARN(logger_output,"WARNING");
LOG4CXX_DEBUG(logger_output,"DEBUG");
LOG4CXX_ASSERT(logger_output,false , "ASSERT");
LOG4CXX_FATAL(logger_output,"FATAL");
::google::InitGoogleLogging(argv[0]);
// Print output to stderr (while still logging)
FLAGS_alsologtostderr = 1;
#ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
#endif
gflags::SetUsageMessage("Do detection using SSD mode.\n"
"Usage:\n"
" ssd_detect [FLAGS] model_file weights_file list_file\n");
gflags::ParseCommandLineFlags(&argc, &argv, true);
/*
if (argc < 4) {
gflags::ShowUsageWithFlagsRestrict(argv[0], "examples/ssd/ssd_detect");
return 1;
}
*/
const string& model_file ="/usr/local/neumoai/caffe_ssd/jobs/VGGNet_for_car/voc_car/SSD_512x512/deploy.prototxt"; //argv[1];
const string& weights_file ="/usr/local/neumoai/caffe_ssd/models/VGGNet_for_car/voc_car/SSD_512x512/VGG_VOC0712_SSD_512x512_iter_32000.caffemodel" ;//argv[2];
const string& mean_file = FLAGS_mean_file;
const string& mean_value = FLAGS_mean_value;
const string& file_type = FLAGS_file_type;
const string& out_file = FLAGS_out_file;
const float confidence_threshold = FLAGS_confidence_threshold;
// Initialize the network.
Detector detector(model_file, weights_file, mean_file, mean_value);
// Set the output mode.
std::streambuf* buf = std::cout.rdbuf();
std::ofstream outfile;
if (!out_file.empty()) {
outfile.open(out_file.c_str());
if (outfile.good()) {
buf = outfile.rdbuf();
}
}
std::ostream out(buf);
const string &type_indicate = argv[2] ;
// Process image one by one.
// std::string pic_dir = "/home/wq/WorkShop/car_detector/000057.jpeg" ;
// std::ifstream infile(argv[1]);
std::string file="i am here";
// infile >> file ;
// printf("-----%s",file.c_str());
// while (infile >> file) {
// out << file.c_str();
if (!type_indicate.compare("image")) {
cv::Mat img = cv::imread(argv[1]);
CHECK(!img.empty()) << "Unable to decode image ";// << file;
std::vector<vector<float> > detections = detector.Detect(img);
/* Print the detection results. */
for (int i = 0; i < detections.size(); ++i) {
const vector<float>& d = detections[i];
// Detection format: [image_id, label, score, xmin, ymin, xmax, ymax].
CHECK_EQ(d.size(), 7);
const float score = d[2];
if (score >= confidence_threshold) {
out << file << " ";
out << static_cast<int>(d[1]) << " ";
out << score << " ";
out << static_cast<int>(d[3] * img.cols) << " ";
out << static_cast<int>(d[4] * img.rows) << " ";
out << static_cast<int>(d[5] * img.cols) << " ";
out << static_cast<int>(d[6] * img.rows) << std::endl;
}
}
IplImage _tmp = IplImage(img);
/**************************************************/
//add by wq,show the rectangles of detection result
show_detect_result(&_tmp , detections,confidence_threshold );
cvNamedWindow("the_detect_result",0);
cvShowImage("the_detect_result",&_tmp);
cvWaitKey(0);
cvDestroyWindow("the_detect_result");
/***************************************************/
} else if (!type_indicate.compare("video")) {
//add by wqz to show the results of detection
CvCapture* cvCap = cvCaptureFromFile(argv[1]);// argv[1] is video name
clock_t time_begin ,time_end ;
int interval = 50 ;
IplImage * img_resize = cvCreateImage(cvSize(512,512),IPL_DEPTH_8U,3);
const char *winName = "detection_result";
cvNamedWindow(winName,0);
while(1) {
interval++;
IplImage* img = cvQueryFrame(cvCap);
if (img == NULL) {
printf("No more frames, press any key to exit.\n");
break;
}
//if(interval>50)
{ interval=0;
if(img->width >img->height)
cvSetImageROI(img,cvRect(int((img->width-img->height)/2),0,img->height,img->height));
else
cvSetImageROI(img,cvRect(0,int((img->height-img->width)/2),img->width,img->width));
cvResize(img,img_resize,cv::INTER_LINEAR);
cv::Mat M(img_resize, false);
CHECK(!M.empty()) << "Error when read frame";
time_begin = clock();
std::vector<vector<float> > detections = detector.Detect(M);
time_end = clock();
printf("the time comsuming:%f \n",difftime(time_end,time_begin)/CLOCKS_PER_SEC);
show_detect_result(img_resize , detections,confidence_threshold );
cvShowImage(winName, img_resize);
int key = cvWaitKey(1000/1000);// 30 frame/second for displaying in window
}
}
cvReleaseImage(&img_resize);
cvDestroyWindow(winName);
cvReleaseCapture(&cvCap);
} else {
LOG(FATAL) << "Unknown file_type: " << file_type;
}
// }
return 0;
}
/*#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV*/
可以根据输入参数决定测试的是图片还是视频,大部分代码为ssd自带例程中的,仅供参考。
CMakeLists.txt如下所示:
cmake_minimum_required(VERSION 2.8.7)
#cmake_policy(SET CMP0046 NEW)
#named the project
project(ssd_300X300_detect_demo CXX)
#set the caffe include path
set(Caffe_INCLUDE_DIR /usr/local/neumoai/caffe_ssd/distribute/include)
set(OpenCV_INCLUDE_DIR /usr/local/neumoai/opencv2.4.11/include)
set(Cuda_INCLUDE_DIR /usr/local/neumoai/cuda8.0/include)
set(Log4cxx /usr/local/log4cxx/include)
set(Root_include /usr/include)
set(Home_include /usr/local/include)
include_directories(${Caffe_INCLUDE_DIR} ${OpenCV_INCLUDE_DIR} ${Log4cxx} ${Cuda_INCLUDE_DIR} ${Root_include} ${Home_include})
find_package(OpenCV REQUIRED)
message(${OpenCV_INCLUDE_DIR})
message(${OpenCV_LIBS})
link_directories("/usr/lib")
link_directories("/usr/local/lib")
link_directories("/usr/local/neumoai/cuda8.0/targets/x86_64-linux/lib")
add_executable(ssd_300X300_detect_demo ssd_detect_log.cpp)
#target_link_libraries(ssd_300X300_detect_demo /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.19)
target_link_libraries(ssd_300X300_detect_demo ${OpenCV_LIBS})
target_link_libraries(ssd_300X300_detect_demo /usr/local/log4cxx/lib/liblog4cxx.so)
target_link_libraries(ssd_300X300_detect_demo /usr/local/neumoai/caffe_ssd/distribute/lib/libcaffe.so)
target_link_libraries(ssd_300X300_detect_demo libglog.so)
target_link_libraries(ssd_300X300_detect_demo libgflags.so)
target_link_libraries(ssd_300X300_detect_demo libcudart.so)
target_link_libraries(ssd_300X300_detect_demo libcublas.so)
target_link_libraries(ssd_300X300_detect_demo libcurand.so)
target_link_libraries(ssd_300X300_detect_demo librt.so)
target_link_libraries(ssd_300X300_detect_demo libboost_system.so)
#target_link_libraries(ssd_300X300_detect_demo /usr/local/neumoai/cuda8.0/lib64)
log4cxx的配置文件conf.log内容如下所示:
log4j.rootLogger=debug, R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
# Pattern to output the caller's file name and line number.
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=./ssd_detect.log
log4j.appender.R.MaxFileSize=100KB
# Keep one backup file
log4j.appender.R.MaxBackupIndex=10
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%5p %c [%t] (%F:%L) - %m%n