主要利用到了高斯 闭合操作 根据特征点来分辨,
#ifndef GETFOOTIMG_H
#define GETFOOTIMG_H
#include<QThread>
#include<QObject>
#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
using namespace cv;
using namespace std;
//定义gmm模型用到的变量
#define GMM_MAX_COMPONT 6 //每个GMM最多的高斯模型个数
#define GMM_LEARN_ALPHA 0.005
#define GMM_THRESHOD_SUMW 0.7
#define TRAIN_FRAMES 60 // 对前 TRAIN_FRAMES 帧建模
struct MapInfo
{
int x;
int y;
bool letf;
bool right;
bool positive;
};
class GetFootImg : public QThread
{
Q_OBJECT
public:
explicit GetFootImg(QObject *parent = nullptr);
~GetFootImg();
MapInfo footInfo;
void init(const Mat _image);
void processFirstFrame(const Mat _image);
void trainGMM(const Mat _image);
void getFitNum(const Mat _image);
void testGMM(const Mat _image);
Mat getMask(void)
{
return m_mask;
}
private:
Mat m_weight[GMM_MAX_COMPONT]; //权值
Mat m_mean[GMM_MAX_COMPONT]; //均值
Mat m_sigma[GMM_MAX_COMPONT]; //方差
Mat m_mask;
Mat m_fit_num;
signals:
//void push_img(QMap<QString,QImage>);
public slots:
protected:
void run();
};
#endif // GETFOOTIMG_H
#include "getfootimg.h"
GetFootImg::GetFootImg(QObject *parent) : QThread(parent)
{
footInfo.x=0;
footInfo.y=0;
footInfo.positive=false;
footInfo.letf=false;
footInfo.right=false;
}
GetFootImg::~GetFootImg()
{
}
// 全部初始化为0
void GetFootImg::init(const Mat _image)
{
/****initialization the three parameters ****/
for(int i = 0; i < GMM_MAX_COMPONT; i++)
{
m_weight[i] = Mat::zeros(_image.size(), CV_32FC1);
m_mean[i] = Mat::zeros(_image.size(), CV_8UC1);
m_sigma[i] = Mat::zeros(_image.size(), CV_32FC1);
}
m_mask = Mat::zeros(_image.size(),CV_8UC1);
m_fit_num = Mat::ones(_image.size(),CV_8UC1);
}
//gmm第一帧初始化函数实现
//捕获到第一帧时对高斯分布进行初始化.主要包括对每个高斯分布的权值、期望和方差赋初值.
//其中第一个高斯分布的权值为1,期望为第一个像素数据.其余高斯分布权值为0,期望为0.
//每个高斯分布都被赋予适当的相等的初始方差 15
void GetFootImg::processFirstFrame(const Mat _image)
{
for(int i = 0; i < GMM_MAX_COMPONT; i++)
{
if (i == 0)
{
m_weight[i].setTo(1.0);
_image.copyTo(m_mean[i]);
m_sigma[i].setTo(15.0);
}
else
{
m_weight[i].setTo(0.0);
m_mean[i].setTo(0);
m_sigma[i].setTo(15.0);
}
}
}
// 通过新的帧来训练GMM
void GetFootImg::trainGMM(const Mat _image)
{
for(int i = 0; i < _image.rows; i++)
{
for(int j = 0; j < _image.cols; j++)
{
int num_fit = 0;
/**************************** Update parameters Start ******************************************/
for(int k = 0 ; k < GMM_MAX_COMPONT; k++)
{
int delm = abs(_image.at<uchar>(i, j) - m_mean[k].at<uchar>(i, j));
long dist = delm * delm;
// 判断是否匹配:采样值与高斯分布的均值的距离小于3倍方差(表示匹配)
if( dist < 3.0 * m_sigma[k].at<float>(i, j))
{
// 如果匹配
/****update the weight****/
m_weight[k].at<float>(i, j) += GMM_LEARN_ALPHA * (1 - m_weight[k].at<float>(i, j));
/****update the average****/
m_mean[k].at<uchar>(i, j) += (GMM_LEARN_ALPHA / m_weight[k].at<uchar>(i, j)) * delm;
/****update the variance****/
m_sigma[k].at<float>(i, j) += (GMM_LEARN_ALPHA / m_weight[k].at<float>(i, j)) * (dist - m_sigma[k].at<float>(i, j));
}
else
{
// 如果不匹配。则该该高斯模型的权值变小
m_weight[k].at<float>(i, j) += GMM_LEARN_ALPHA * (0 - m_weight[k].at<float>(i, j));
num_fit++; // 不匹配的模型个数
}
}
/**************************** Update parameters End ******************************************/
/*********************** Sort Gaussian component by 'weight / sigma' Start ****************************/
//对gmm各个高斯进行排序,从大到小排序,排序依据为 weight / sigma
for(int kk = 0; kk < GMM_MAX_COMPONT; kk++)
{
for(int rr=kk; rr< GMM_MAX_COMPONT; rr++)
{
if(m_weight[rr].at<float>(i, j)/m_sigma[rr].at<float>(i, j) > m_weight[kk].at<float>(i, j)/m_sigma[kk].at<float>(i, j))
{
//权值交换
float temp_weight = m_weight[rr].at<float>(i, j);
m_weight[rr].at<float>(i, j) = m_weight[kk].at<float>(i, j);
m_weight[kk].at<float>(i, j) = temp_weight;
//均值交换
uchar temp_mean = m_mean[rr].at<uchar>(i, j);
m_mean[rr].at<uchar>(i, j) = m_mean[kk].at<uchar>(i, j);
m_mean[kk].at<uchar>(i, j) = temp_mean;
//方差交换
float temp_sigma = m_sigma[rr].at<float>(i, j);
m_sigma[rr].at<float>(i, j) = m_sigma[kk].at<float>(i, j);
m_sigma[kk].at<float>(i, j) = temp_sigma;
}
}
}
/*********************** Sort Gaussian model by 'weight / sigma' End ****************************/
/*********************** Create new Gaussian component Start ****************************/
if(num_fit == GMM_MAX_COMPONT && 0 == m_weight[GMM_MAX_COMPONT - 1].at<float>(i, j))
{
//if there is no exit component fit,then start a new component
//当有新值出现的时候,若目前分布个数小于M,新添一个分布,以新采样值作为均值,并赋予较大方差和较小权值
for(int k = 0 ; k < GMM_MAX_COMPONT; k++)
{
if(0 == m_weight[k].at<float>(i, j))
{
m_weight[k].at<float>(i, j) = GMM_LEARN_ALPHA;
m_mean[k].at<uchar>(i, j) = _image.at<uchar>(i, j);
m_sigma[k].at<float>(i, j) = 15.0;
//normalization the weight,let they sum to 1
for(int q = 0; q < GMM_MAX_COMPONT && q != k; q++)
{
//对其他的高斯模型的权值进行更新,保持权值和为1
/****update the other unfit's weight,u and sigma remain unchanged****/
// m_weight[q].at<float>(i, j) *= (1 - GMM_LEARN_ALPHA);
m_weight[q].at<float>(i, j) *= ((1 - GMM_LEARN_ALPHA) / 1 - m_weight[k].at<float>(i, j) ) ;
}
break; //找到第一个权值不为0的即可
}
}
}
else if(num_fit == GMM_MAX_COMPONT && m_weight[GMM_MAX_COMPONT -1].at<float>(i, j) != 0)
{
//如果GMM_MAX_COMPONT都曾经赋值过,则用新来的高斯代替权值最弱的高斯,权值不变,只更新均值和方差
m_mean[GMM_MAX_COMPONT-1].at<uchar>(i, j) = _image.at<uchar>(i, j);
m_sigma[GMM_MAX_COMPONT-1].at<float>(i, j) = 15.0;
}
/*********************** Create new Gaussian component End ****************************/
}
}
}
//对输入图像每个像素gmm选择合适的高斯分量个数
//排序后最有可能是背景分布的排在最前面,较小可能的短暂的分布趋向于末端.我们将排序后的前fit_num个分布选为背景模型;
//在排过序的分布中,累积概率超过GMM_THRESHOD_SUMW的前fit_num个分布被当作背景模型,剩余的其它分布被当作前景模型.
void GetFootImg::getFitNum(const Mat _image)
{
for(int i = 0; i < _image.rows; i++)
{
for(int j = 0; j < _image.cols; j++)
{
float sum_w = 0.0; //重新赋值为0,给下一个像素做累积
for(uchar k = 0; k < GMM_MAX_COMPONT; k++)
{
sum_w += m_weight[k].at<float>(i, j);
if(sum_w >= GMM_THRESHOD_SUMW) //如果这里THRESHOD_SUMW=0.6的话,那么得到的高斯数目都为1,因为每个像素都有一个权值接近1
{
m_fit_num.at<uchar>(i, j) = k + 1;
break;
}
}
}
}
}
//gmm测试函数的实现
void GetFootImg::testGMM(const Mat _image)
{
for(int i = 0; i < _image.rows; i++)
{
for(int j = 0; j < _image.cols; j++)
{
int k = 0;
for( ; k < m_fit_num.at<uchar>(i, j); k++)
{
if(abs(_image.at<uchar>(i, j) - m_mean[k].at<uchar>(i, j)) < (uchar)( 2.5 * m_sigma[k].at<float>(i, j)))
{
m_mask.at<uchar>(i, j) = 0;
break;
}
}
if(k == m_fit_num.at<uchar>(i, j))
{
m_mask.at<uchar>(i, j) = 255;
}
}
}
}
void GetFootImg::run()
{
Mat frame, gray, mask;
VideoCapture capture;
capture.open(0);
if (!capture.isOpened())
{
cout<<"No camera or video input!\n"<<endl;
return ;
}
// MOG_BGS Mog_Bgs;
int count = 0;
while (1)
{
count++;
capture >> frame;
if (frame.empty())
break;
Mat TempImg_Save=frame.clone();
cvtColor(frame, gray, CV_RGB2GRAY);
if (count == 1)
{
init(gray);
processFirstFrame(gray);
cout<<" Using "<<TRAIN_FRAMES<<" frames to training GMM..."<<endl;
}
else if (count < TRAIN_FRAMES)
{
trainGMM(gray);
}
else if (count == TRAIN_FRAMES)
{
getFitNum(gray);
cout<<" Training GMM complete!"<<endl;
}
else
{
testGMM(gray);
mask = getMask();
morphologyEx(mask, mask, MORPH_OPEN, Mat());
erode(mask, mask, Mat(7, 7, CV_8UC1), Point(-1, -1)); // You can use Mat(5, 5, CV_8UC1) here for less distortion
dilate(mask, mask, Mat(7, 7, CV_8UC1), Point(-1, -1));
Mat Temp;
TempImg_Save.copyTo(Temp,mask);
imshow(" oooio",Temp);
//--------------20181101
// waitKey();
//-------------20181101
Mat imgHSV;
// vector<Mat> hsvSplit;
cvtColor(Temp, imgHSV, COLOR_BGR2HSV);
//绿色颜色的HSV范围
int iLowH = 35;
int iHighH = 77;
int iLowS = 43;
int iHighS = 255;
int iLowV = 46;
int iHighV = 255;
// cvtColor(img, imgHSV, COLOR_BGR2HSV);//转为HSV
// imwrite("hsv.jpg",imgHSV);
Mat imgThresholded;
inRange(imgHSV, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, iHighV), imgThresholded); //Threshold the image
//开操作 (去除一些噪点) 如果二值化后图片干扰部分依然很多,增大下面的size
Mat element = getStructuringElement(MORPH_RECT, Size(5, 5));
morphologyEx(imgThresholded, imgThresholded, MORPH_OPEN, element);
//闭操作 (连接一些连通域)
morphologyEx(imgThresholded, imgThresholded, MORPH_CLOSE, element);
// namedWindow("Thresholded Image",CV_WINDOW_NORMAL);
imshow("Thresholded Image", imgThresholded);
bool runing=false;
for(int i=0;i<imgThresholded.rows;i++)
{
for(int j=0;j<imgThresholded.cols;j++)
{
if(imgThresholded.at<uchar>(i,j) == 255)
{
cout<<" x is >>"<<i<<"<< y is >>"<<j<<" << "<<endl;
footInfo.x=i;
footInfo.y=j;
runing=true;
break;
}
}
if(runing)
{
break;
}
}
if(footInfo.x !=NULL && footInfo.y !=NULL)
{
Mat img1;
Mat img2;
cvtColor(Temp,img1,CV_RGB2GRAY);
cvtColor(Temp,img2,CV_RGB2GRAY);
SiftFeatureDetector SiftDetector(800);
vector<KeyPoint> keyPoint1,keyPoint2;
SiftDetector.detect(img1,keyPoint1);
SiftDetector.detect(img2,keyPoint2);
//特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor SiftDescriptor;
Mat imageDesc1, imageDesc2;
SiftDescriptor.compute(img1, keyPoint1, imageDesc1);
SiftDescriptor.compute(img2, keyPoint2, imageDesc2);
FlannBasedMatcher matcher;
vector<vector<DMatch> > matchePoints;
vector<DMatch> GoodMatchePoints;
vector<Mat> train_desc(1, imageDesc1);
matcher.add(train_desc);
matcher.train();
matcher.knnMatch(imageDesc2, matchePoints, 2);
cout << "total match points: " << matchePoints.size() << endl;
// Lowe's algorithm,获取优秀匹配点
for (int i = 0; i < matchePoints.size(); i++)
{
if (matchePoints[i][0].distance < 0.6 * matchePoints[i][1].distance)
{
GoodMatchePoints.push_back(matchePoints[i][0]);
}
}
Mat first_match;
drawMatches(img2, keyPoint2, img1, keyPoint1, GoodMatchePoints, first_match);
imshow("first_match ", first_match);
imwrite("first_match.jpg", first_match);
}