【机器学习一】梯度下降算法、随机梯度下降算法、批量梯度下降与梯度上升算法的比较

本文对比了梯度下降、随机梯度下降和批量梯度下降算法,探讨了它们在求解最小值时的特点和适用场景。同时,还分析了梯度下降与牛顿法的区别,以及梯度下降法和梯度上升法的几何解释,解释了为何在寻找最大值时使用梯度上升法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降法、随机梯度下降算法、批量梯度下降

梯度下降:梯度下降就是我上面的推导,要留意,在梯度下降中,对于θ的更新,所有的样本都有贡献,也就是参与调整θ

其计算得到的是一个标准梯度。因而理论上来说一次更新的幅度是比较大的。如果样本不多的情况下,当然是这样收敛的速度会更快啦~

 

随机梯度下降:可以看到多了随机两个字,随机也就是说我用样本中的一个例子来近似我所有的样本,来调整θ

,因而随机梯度下降是会带来一定的问题,因为计算得到的并不是准确的一个梯度,容易陷入到局部最优解中

 

批量梯度下降:其实批量的梯度下降就是一种折中的方法,他用了一些小样本来近似全部的,其本质就是我1个指不定不太准,那我用个30个50个样本那比随机的要准不少了吧,而且批量的话还是非常可以反映样本的一个分布情况的。

梯度下降法与牛顿法的比较

梯度下降法是用来求函数值最小处的参数值,而牛顿法是用来求函数值为0处的参数值,这两者的目的初看是感觉有所不同,但是再仔细观察下牛顿法是求函数值为0时的情况,如果此时的函数是某个函数A的导数,则牛顿法也算是求函数A的最小值(当然也有可能是最大值)了,因此这两者方法目的还是具有相同性的。牛顿法的参数求解也可以用矢量的形式表示,表达式中有hession矩阵和一元导函数向量。

首先的不同之处在于梯度法中需要选择学习速率,而牛顿法不需要选择任何参数。第二个不同之处在于梯度法需要大量的迭代次数才能找到最小值,而牛顿法只需要少量的次数便可完成。但是梯度法中的每一次迭代的代价要小,其复杂度为O(n),而牛顿法的每一次迭代的代价要大,为O(n^3)。因此当特征的数量n比较小时适合选择牛顿法,当特征数n比较大时,最好选梯度法。这里的大小以n等于1000为界来计算。

梯度下降与梯度上升算法的比较

在求极值的问题中,有梯度上升和梯度下降两个最优化方法。梯度上升用于求最大值,梯度下降用于求最小值。

 

梯度下降法几何解释:

   &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值