70. 爬楼梯

https://leetcode-cn.com/articles/climbing-stairs/

参考:https://leetcode-cn.com/articles/climbing-stairs/

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶
    示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

C++
动态规划

class Solution {
public:
    int climbStairs(int n) {
        //到n阶的方法=到n-1阶的方法+到n-2阶的方法,即dp(n)=dp(n-1)+dp(n-2)
        //dp(1)=1,dp(2)=2;
        if(n==1)return 1;
        if(n==2)return 2;
        int dp[n+1]={0};
        dp[1]=1,dp[2]=2;
        for(int i=3;i<n+1;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
<think>我们被要求回答LeetCode70题“爬楼梯”的解题思路,重点在动态规划和递归方法。根据引用内容,我们可以总结如下:1.问题描述:爬楼梯,每次可以爬1或2个台阶,到达第n阶有多少种不同的方法。2.动态规划是解决此问题的典型方法,状态转移方程为:dp[i]=dp[i-1]+dp[i-2]。3.递归方法虽然直观,但存在重复计算,可能导致超时,可以使用记忆化搜索优化(Top-DownDP)。4.动态规划(自底向上)通常使用数组存储中间结果,然后进行空间优化(例如用两个变量代替数组)。我们将按照以下结构组织回答:一、问题描述二、思路分析(递归关系)三、递归方法(及优化)四、动态规划方法(及优化)五、总结同时,根据要求,我们需要在回答末尾生成相关问题。注意:所有数学表达式(包括变量、方程)使用$...$格式,独立公式使用$$...$$格式。回答使用中文。引用标识:在引用的内容末尾添加[^1]、[^2]等,但注意我们引用的内容来自用户提供的引用[1]到[4]。</think>### LeetCode 70爬楼梯|动态规划与递归解析 #### 一、问题描述 给定楼梯阶数 $n$,每次可爬 $1$ 或 $2$ 阶,求到达第 $n$ 阶的不同方法总数。 #### 二、核心思路 **状态转移方程**: $$ dp[i] = dp[i-1] + dp[i-2] $$ 其中 $dp[i]$ 表示到达第 $i$ 阶的方法数。该方程源于:第 $i$ 阶只能从 $i-1$ 阶(爬 $1$ 阶)或 $i-2$ 阶(爬 $2$ 阶)到达[^2][^4]。 --- #### 三、动态规划解法(推荐) **自底向上迭代**,避免递归重复计算: ```python def climbStairs(n: int) -> int: if n <= 2: return n # 边界处理 dp = [0] * (n+1) dp[1], dp[2] = 1, 2 # 初始状态 for i in range(3, n+1): dp[i] = dp[i-1] + dp[i-2] # 状态转移 return dp[n] ``` **空间优化**(滚动变量): 仅需存储前两个状态,空间复杂度优化至 $O(1)$: ```python def climbStairs(n: int) -> int: if n <= 2: return n a, b = 1, 2 # a=dp[i-2], b=dp[i-1] for _ in range(3, n+1): a, b = b, a + b # 更新状态 return b ``` --- #### 四、递归解法(需优化) **基础递归**(不推荐): 直接实现状态方程,但存在指数级重复计算: ```python def climbStairs(n: int) -> int: if n == 1: return 1 if n == 2: return 2 return climbStairs(n-1) + climbStairs(n-2) # 递归分解 ``` **问题**:计算 $dp[5]$ 需重复计算 $dp[3]$ 和 $dp[4]$,时间复杂度 $O(2^n)$,$n=45$ 时超时[^3]。 **优化:记忆化搜索(Top-Down DP)** 添加缓存避免重复计算,时间复杂度降为 $O(n)$: ```python def climbStairs(n: int) -> int: memo = {} # 记忆字典 def dfs(k): if k <= 2: return k if k not in memo: memo[k] = dfs(k-1) + dfs(k-2) # 缓存结果 return memo[k] return dfs(n) ``` --- #### 五、复杂度对比 | 方法 | 时间复杂度 | 空间复杂度 | 适用性 | |---------------|------------|------------|----------------| | 基础递归 | $O(2^n)$ | $O(n)$ | 仅小 $n$ | | 记忆化搜索 | $O(n)$ | $O(n)$ | 需额外缓存 | | 动态规划 | $O(n)$ | $O(n)$ | 通用 | | **空间优化DP**| $O(n)$ | $O(1)$ | **最优解** | > **总结**:动态规划(尤其空间优化版)是本题最佳解法。其本质是斐波那契数列问题,状态转移方程 $dp[i]=dp[i-1]+dp[i-2]$ 是核心[^1][^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值