pcl点云聚类方法

本文详细介绍了点云聚类中的欧式聚类分割方法,通过创建Kd树对象和点云索引向量进行聚类存储。讨论了如何设置合适的聚类搜索半径ClusterTolerance,以及如何利用setMinClusterSize和setMaxClusterSize限制聚类大小。内容涵盖从点云索引向量中提取并分割聚类的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节记录下点云聚类方法

1.欧式聚类分割方法

//为提取点云时使用的搜素对象利用输入点云cloud_filtered创建Kd树对象tree。

pcl::search::KdTree::Ptr tree (new pcl::search::KdTree);
tree->setInputCloud (cloud_filtered);//创建点云索引向量,用于存储实际的点云信息

首先创建一个Kd树对象作为提取点云时所用的搜索方法,再创建一个点云索引向量cluster_indices,用于存储实际的点云索引信息,每个检测到的点云聚类被保存在这里。请注意: cluster_indices是一个向量,对每个检测到的聚类,它都包含一个索引点的实例,如cluster_indices[0]包含点云中第一个聚类包含的点集的所有索引。

std::vector<pcl::PointIndices> cluster_indices;
pcl::Euclidean
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值