统计学习方法HMM作业

10.1

根据后向算法:

  1. 计算初值
    β 4 ( i ) = 1 , i = 1 , 2 , 3 \beta_{4}(i)=1, i=1,2,3 β4(i)=1,i=1,2,3
  2. 递推计算:
    对于 t = 3 , 2 , 1 β i ( i ) = ∑ i = 1 a i j b j ( o i + 1 ) β i + 1 ( j ) , i = 1 , 2 , 3 β 3 ( 1 ) = ∑ i = 1 3 a 1 j b j ( o 4 ) β 4 ( j ) = ( 0.5 ∗ 0.5 + 0.2 ∗ 0.6 + 0.3 ∗ 0.3 ) ∗ 1 = 0.46 β 3 ( 2 ) = ∑ j = 1 3 a 2 j b j ( o 4 ) β 4 ( j ) = ( 0.3 ∗ 0.5 + 0.5 ∗ 0.6 + 0.2 ∗ 0.3 ) ∗ 1 = 0.51 β 3 ( 3 ) = ∑ j = 1 3 a 3 j b j ( o 4 ) β 4 ( j ) = ( 0.2 ∗ 0.5 + 0.3 ∗ 0.6 + 0.5 ∗ 0.3 ) ∗ 1 = 0.43 β 2 ( 1 ) = ∑ i = 1 3 a 1 j b j ( o 3 ) β 3 ( j ) = ( 0.5 ∗ 0.5 + 0.2 ∗ 0.4 + 0.3 ∗ 0.7 ) ∗ 0.46 = 0.248 β 2 ( 2 ) = ∑ j = 1 3 a 2 j b j ( o 3 ) β 3 ( j ) = ( 0.3 ∗ 0.5 + 0.5 ∗ 0.4 + 0.2 ∗ 0.7 ) ∗ 0.51 = 0.249 β 2 ( 3 ) = ∑ i = 1 3 a 3 b j ( o 3 ) β 3 ( j ) = ( 0.2 ∗ 0.5 + 0.3 ∗ 0.4 + 0.5 ∗ 0.7 ) ∗ 0.43 = 0.245 β 1 ( 1 ) = ∑ j = 1 3 a 1 j b j ( o 2 ) β 2 ( j ) = ( 0.5 ∗ 0.5 + 0.2 ∗ 0.6 + 0.3 ∗ 0.3 ) ∗ 0.2484 = 0.114264 β 1 ( 2 ) = ∑ j − 1 3 a 2 j b j ( o 2 ) β 2 ( j ) = ( 0.3 ∗ 0.5 + 0.5 ∗ 0.6 + 0.2 ∗ 0.3 ) ∗ 0.2499 = 0.127449 β 1 ( 3 ) = ∑ i = 1 3 a 3 j b j ( o 2 ) β 2 ( j ) = ( 0.2 ∗ 0.5 + 0.3 ∗ 0.6 + 0.5 ∗ 0.3 ) ∗ 0.2451 = 0.1053 \begin{aligned} &\text {对于} t=3,2,1 \beta_{i}(i)=\sum_{i=1} a_{i j} b_{j}\left(o_{i+1}\right) \beta_{i+1}(j), i=1,2,3\\ &\beta_{3}(1)=\sum_{i=1}^{3} a_{1 j} b_{j}\left(o_{4}\right) \beta_{4}(j)=(0.5 * 0.5+0.2 * 0.6+0.3 * 0.3) * 1=0.46\\ &\beta_{3}(2)=\sum_{j=1}^{3} a_{2 j} b_{j}\left(o_{4}\right) \beta_{4}(j)=(0.3 * 0.5+0.5 * 0.6+0.2 * 0.3) * 1=0.51\\ &\beta_{3}(3)=\sum_{j=1}^{3} a_{3 j} b_{j}\left(o_{4}\right) \beta_{4}(j)=(0.2 * 0.5+0.3 * 0.6+0.5 * 0.3) * 1=0.43\\ &\beta_{2}(1)=\sum_{i=1}^{3} a_{1 j} b_{j}\left(o_{3}\right) \beta_{3}(j)=(0.5 * 0.5+0.2 * 0.4+0.3 * 0.7) * 0.46=0.248\\ &\beta_{2}(2)=\sum_{j=1}^{3} a_{2 j} b_{j}\left(o_{3}\right) \beta_{3}(j)=(0.3 * 0.5+0.5 * 0.4+0.2 * 0.7) * 0.51=0.249\\ &\beta_{2}(3)=\sum_{i=1}^{3} a_{3} b_{j}\left(o_{3}\right) \beta_{3}(j)=(0.2 * 0.5+0.3 * 0.4+0.5 * 0.7) * 0.43=0.245\\ &\beta_{1}(1)=\sum_{j=1}^{3} a_{1 j} b_{j}\left(o_{2}\right) \beta_{2}(j)=(0.5 * 0.5+0.2 * 0.6+0.3 * 0.3) * 0.2484=0.114264\\ &\beta_{1}(2)=\sum_{j_{-1}}^{3} a_{2 j} b_{j}\left(o_{2}\right) \beta_{2}(j)=(0.3 * 0.5+0.5 * 0.6+0.2 * 0.3) * 0.2499=0.127449\\ &\beta_{1}(3)=\sum_{i=1}^{3} a_{3 j} b_{j}\left(o_{2}\right) \beta_{2}(j)=(0.2 * 0.5+0.3 * 0.6+0.5 * 0.3) * 0.2451=0.1053 \end{aligned} 对于t=3,2,1βi(i)=i=1aijbj(oi+1)βi+1(j),i=1,2,3β3(1)=i=13a1jbj(o4)β4(j)=(0.50.5+0.20.6+0.30.3)1=0.46β3(2)=j=13a2jbj(o4)β4(j)=(0.30.5+0.50.6+0.20.3)1=0.51β3(3)=j=13a3jbj(o4)β4(j)=(0.20.5+0.30.6+0.50.3)1=0.43β2(1)=i=13a1jbj(o3)β3(j)=(0.50.5+0.20.4+0.30.7)0.46=0.248β2(2)=j=13a2jbj(o3)β3(j)=(0.30.5+0.50.4+0.20.7)0.51=0.249β2(3)=i=13a3bj(o3)β3(j)=(0.20.5+0.30.4+0.50.7)0.43=0.245β1(1)=j=13a1jbj(o2)β2(j)=(0.50.5+0.20.6+0.30.3)0.2484=0.114264β1(2)=j13a2jbj(o2)β2(j)=(0.30.5+0.50.6+0.20.3)0.2499=0.127449β1(3)=i=13a3jbj(o2)β2(j)=(0.20.5+0.30.6+0.50.3)0.2451=0.1053
  3. 计算最终 P ( O ∣ λ ) = ∑ i = 1 3 π i b i ( o 1 ) β 1 ( i ) P(O | \lambda)=\sum_{i=1}^{3} \pi_{i} b_{i}\left(o_{1}\right) \beta_{1}(i) P(Oλ)=i=13πibi(o1)β1(i)的值:
    P ( O ∣ λ ) = ∑ i = 1 3 π i b i ( o 1 ) β 1 ( i ) = 0.2 ∗ 0.5 ∗ 0.114264 + 0.4 ∗ 0.4 ∗ 0.127449 + 0.4 ∗ 0.7 ∗ 0.105393 = 0.0613 P(O | \lambda)=\sum_{i=1}^{3} \pi_{i} b_{i}\left(o_{1}\right) \beta_{1}(i)=0.2 * 0.5 * 0.114264+0.4 * 0.4 * 0.127449+0.4 * 0.7 * 0.105393=0.0613 P(Oλ)=i=13πibi(o1)β1(i)=0.20.50.114264+0.40.40.127449+0.40.70.105393=0.0613

10.2

根据公式有:
P ( i 4 = q 3 ∣ O , λ ) = γ 4 ( 3 ) = α 4 ( 3 ) β 4 ( 3 ) ∑ j = 1 3 α 4 ( j ) β 4 ( j ) P\left(i_{4}=q_{3} | O, \lambda\right)=\gamma_{4}(3)=\frac{\alpha_{4}(3) \beta_{4}(3)}{\sum_{j=1}^{3} \alpha_{4}(j) \beta_{4}(j)} P(i4=q3O,λ)=γ4(3)=j=13α4(j)β4(j)α4(3)β4(3)
1.根据前向计算 α \alpha α:

  α 1 ( 1 ) = π 1 b 1 ( 0 1 ) = 0.10 α 1 ( 1 ) = π 2 b 2 ( q ) = 0.12 α 1 ( 1 ) = π 3 b 3 ( 0 , 1 ) = 0.35 α 2 ( 1 ) = [ ∑ 17 3 α 1 ( i ) a i 1 ] b 1 ( 0 2 ) = 0.156 × 0.5 = 0.078 α 2 ( 2 ) = [ ∑ i = 1 3 α 1 ( i ) a i 2 ] b 2 ( 0 1 ) = 0.14 × 0.6 = 0.084 α 2 ( 3 ) = [ ∑ i = 1 3 α 1 ( i ) a i 3 ] b 3 ( 0 2 ) = 0.274 × 0.3 = 0.882 α 3 ( i ) = [ ∑ i = 1 3 α 2 ( i ) a i i ] b i ( 0 3 ) = 0.05004 × 0.5 = 0.04032 α 3 ( x ) = [ ∑ i = 1 3 α 2 ( i ) a i 2 ] b 2 ( θ i ) = 0.06624 × 04 = 0.02650 α 3 ( 3 ) = [ ∑ i = 1 3 α 2 ( i ) a i j ] b 3 ( 0 3 ) = 0.09732 × a 1 = 0.06812 α 4 ( 1 ) = [ ∑ i = 1 3 α 3 ( i ) a i 1 ] b q i ( 0 4 ) = 0.04173 × 0.5 = 0.02087 α 4 ( 2 ) = [ ∑ i = 1 3 α 3 ( i ) a i i ] b i ( 0 4 ) = 0.03091 × 0.9 = 0.01236 α 4 ( 3 ) = [ ∑ i = 1 3 α 3 ( i ) a i 3 ] b i j ( 0 4 ) = 0.0623 × 0.7 = 0.04361 \begin{aligned} &\text { } \alpha_{1}(1)=\pi_{1} b_{1}\left(0_{1}\right)=0.10\\ &\begin{array}{l} \alpha_{1}(1)=\pi_{2} b_{2}(q)=0.12 \\ \alpha_{1}(1)=\pi_{3} b_{3}(0,1)=0.35 \\ \alpha_{2}(1)=\left[\sum_{17}^{3} \alpha_{1}(i) a_{i 1}\right] b_{1}\left(0_{2}\right)=0.156 \times 0.5=0.078 \\ \alpha_{2}(2)=\left[\sum_{i=1}^{3} \alpha_{1}(i) a_{i 2}\right] b_{2}\left(0_{1}\right)=0.14 \times 0.6=0.084 \\ \alpha_{2}(3)=\left[\sum_{i=1}^{3} \alpha_{1}(i) a_{i 3}\right] b_{3}\left(0_{2}\right)=0.274 \times 0.3=0.882 \end{array}\\ &\alpha_{3}(i)=\left[\sum_{i=1}^{3} \alpha_{2}(i) a_{i i}\right] b_{i}\left(0_{3}\right)=0.05004 \times 0.5=0.04032\\ &\alpha_{3}(x)=\left[\sum_{i=1}^{3} \alpha_{2}(i) a_{i 2}\right] b_{2}\left(\theta_{i}\right)=0.06624 \times 04=0.02650\\ &\alpha_{3}(3)=\left[\sum_{i=1}^{3} \alpha_{2}(i) a_{i j}\right] b_{3}\left(0_{3}\right)=0.09732 \times a_{1}=0.06812\\ &\alpha_{4}(1)=\left[\sum_{i=1}^{3} \alpha_{3}(i) a_{i 1}\right] b_{q_{i}}\left(0_{4}\right)=0.04173 \times 0.5=0.02087\\ &\alpha_{4}(2)=\left[\sum_{i=1}^{3} \alpha_{3}(i) a_{i i}\right] b_{i}\left(0_{4}\right)=0.03091 \times 0.9=0.01236\\ &\alpha_{4}(3)=\left[\sum_{i=1}^{3} \alpha_{3}(i) a_{i 3}\right] b_{i j}\left(0_{4}\right)=0.0623 \times 0.7=0.04361 \end{aligned}  α1(1)=π1b1(01)=0.10α1(1)=π2b2(q)=0.12α1(1)=π3b3(0,1)=0.35α2(1)=[173α1(i)ai1]b1(02)=0.156×0.5=0.078α2(2)=[i=13α1(i)ai2]b2(01)=0.14×0.6=0.084α2(3)=[i=13α1(i)ai3]b3(02)=0.274×0.3=0.882α3(i)=[i=13α2(i)aii]bi(03)=0.05004×0.5=0.04032α3(x)=[i=13α2(i)ai2]b2(θi)=0.06624×04=0.02650α3(3)=[i=13α2(i)aij]b3(03)=0.09732×a1=0.06812α4(1)=[i=13α3(i)ai1]bqi(04)=0.04173×0.5=0.02087α4(2)=[i=13α3(i)aii]bi(04)=0.03091×0.9=0.01236α4(3)=[i=13α3(i)ai3]bij(04)=0.0623×0.7=0.04361

  1. 根据后向计算 β \beta β

β 8 ( i ) = 1. i = 1.2 ⋅ N β 7 ( 1 ) = ∑ j = 1 3 a 1 j b j ( 0 8 ) ⋅ β 8 ( j ) = 0.43 β 7 ( 2 ) = ∑ j = 1 3 a 2 j b j ( 0 8 ) ⋅ β 8 ( j ) = 0.51 β 7 ( 3 ) = ∑ j = 1 3 a 3 j b j ( 0 8 ) ⋅ β 8 ( j ) = 0.40 β 6 ( 1 ) = ∑ j = 1 3 a 1 j b j ( 0 7 ) ⋅ β 7 ( j ) = 0.1861 β 6 ( 2 ) = ∑ j = 1 3 a 2 j b j ( 0 7 ) ⋅ β 7 ( j ) = 0.2415 β 6 ( 3 ) = ∑ j = 1 3 a 3 j b j ( 0 7 ) ⋅ β 7 ( j ) = 0.762 β 5 ( 1 ) = ∑ j = 1 3 a 1 j b j ( 0 6 ) ⋅ β 6 ( j ) = 0.10552 β 5 ( 2 ) = ∑ j = 1 3 a 2 j b j ( 0 6 ) ⋅ β 6 ( j ) = 0.10088 β 5 ( 3 ) = ∑ j = 1 3 a 3 j b j ( 0 6 ) ⋅ β 6 ( j ) = 0.11193 β 4 ( 1 ) = ∑ j = 1 3 a 1 j b j ( 0 5 ) ⋅ β 5 ( j ) = 0.04586 β 4 ( 2 ) = ∑ j = 1 3 a 2 j b j ( 0 5 ) ⋅ β 5 ( j ) = 0.05281 β 4 ( 3 ) = ∑ j = 1 3 a 3 j b j ( 0 5 ) ⋅ β 5 ( j ) = 0.04281 \begin{aligned} &\beta_{8}(i)=1 . \quad i=1.2 \cdot N\\ \\ &\beta_{7}(1)=\sum_{j=1}^{3} a_{1 j} b_{j}\left(0_{8}\right) \cdot \beta_{8}(j)=0.43\\ &\beta_{7}(2)=\sum_{j=1}^{3} a_{2 j} b_{j}\left(0_{8}\right) \cdot \beta_{8}(j)=0.51\\ &\beta_{7}(3)=\sum_{j=1}^{3} a_{3 j} b_{j}\left(0_{8}\right) \cdot \beta_{8}(j)=0.40\\ \\ &\beta_{6}(1)=\sum_{j=1}^{3} a_{1 j} b_{j}\left(0_{7}\right) \cdot \beta_{7}(j)=0.1861\\ &\beta_{6}(2)=\sum_{j=1}^{3} a_{2 j} b_{j}\left(0_{7}\right) \cdot \beta_{7}(j)=0.2415\\ &\beta_{6}(3)=\sum_{j=1}^{3} a_{3 j} b_{j}\left(0_{7}\right) \cdot \beta_{7}(j)=0.762\\ \\ &\beta_{5}(1)=\sum_{j=1}^{3} a_{1 j} b_{j}\left(0_{6}\right) \cdot \beta_{6}(j)=0.10552\\ &\beta_{5}(2)=\sum_{j=1}^{3} a_{2 j} b_{j}\left(0_{6}\right) \cdot \beta_{6}(j)=0.10088\\ &\beta_{5}(3)=\sum_{j=1}^{3} a_{3 j} b_{j}\left(0_{6}\right) \cdot \beta_{6}(j)=0.11193\\ \\ &\beta_{4}(1)=\sum_{j=1}^{3} a_{1 j} b_{j}\left(0_{5}\right) \cdot \beta_{5}(j)=0.04586\\ &\beta_{4}(2)=\sum_{j=1}^{3} a_{2 j} b_{j}\left(0_{5}\right) \cdot \beta_{5}(j)=0.05281\\ &\beta_{4}(3)=\sum_{j=1}^{3} a_{3 j} b_{j}(0_5) \cdot \beta_{5}(j)=0.04281 \end{aligned} β8(i)=1.i=1.2Nβ7(1)=j=13a1jbj(08)β8(j)=0.43β7(2)=j=13a2jbj(08)β8(j)=0.51β7(3)=j=13a3jbj(08)β8(j)=0.40β6(1)=j=13a1jbj(07)β7(j)=0.1861β6(2)=j=13a2jbj(07)β7(j)=0.2415β6(3)=j=13a3jbj(07)β7(j)=0.762β5(1)=j=13a1jbj(06)β6(j)=0.10552β5(2)=j=13a2jbj(06)β6(j)=0.10088β5(3)=j=13a3jbj(06)β6(j)=0.11193β4(1)=j=13a1jbj(05)β5(j)=0.04586β4(2)=j=13a2jbj(05)β5(j)=0.05281β4(3)=j=13a3jbj(05)β5(j)=0.04281

根据上式计算,得到结果:

P ( i 4 = q 3 ∣ O , λ ) = 0.537 P\left(i_{4}=q_{3} | O, \lambda\right)=0.537 P(i4=q3O,λ)=0.537

10.3

  1. 初始化为:
    δ 1 ( i ) = π i b i ( o 1 ) = π i b i (红) , i = 1 , 2 , 3 ψ 1 ( i ) = 0 , i = 1 , 2 , 3 \delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right)=\pi_{i} b_{i}\text{(红)}, \quad i=1,2,3 \quad \psi_{1}(i)=0, i=1,2,3 δ1(i)=πibi(o1)=πibi(红),i=1,2,3ψ1(i)=0,i=1,2,3
    自然,有:
    δ 1 ( 1 ) = 0. 2 ∗ 0.5 = 0.1 , δ 1 ( 2 ) = 0. 4 ∗ 0.4 = 0.16 , δ 1 ( 3 ) = 0. 4 ∗ 0.7 = 0.28 \delta_{1}(1)=0.2^{*} 0.5=0.1, \quad \delta_{1}(2)=0.4^{*} 0.4=0.16, \quad \delta_{1}(3)=0.4^{*} 0.7=0.28 δ1(1)=0.20.5=0.1,δ1(2)=0.40.4=0.16,δ1(3)=0.40.7=0.28
  2. 递推公式:
    对t=2,3,4:
    δ t ( i ) = max ⁡ 1 ≤ i ≤ 3 [ δ t − 1 ( j ) a j j ] b i ( o t ) , ψ t ( i ) = arg ⁡ max ⁡ 1 ≤ j ≤ 3 [ δ t − 1 ( j ) a j i ] , i = 1 , 2 , 3 \delta_{t}(i)=\max _{1 \leq i \leq 3}\left[\delta_{t-1}(j) a_{j j}\right] b_{i}\left(o_{t}\right), \quad \psi_{t}(i)=\arg \max _{1 \leq j \leq 3}\left[\delta_{t-1}(j) a_{j i}\right], \quad i=1,2,3 δt(i)=1i3max[δt1(j)ajj]bi(ot),ψt(i)=arg1j3max[δt1(j)aji],i=1,2,3
    当t=4时:
    δ 4 ( 1 ) = max ⁡ 1 ≤ j ≤ 3 [ δ 3 ( j ) a j 1 ] b 1 ( o 4 ) = max ⁡ { 0.00756 ∗ 0.5 , 0.01008 ∗ 0.3 , 0.0147 ∗ 0.2 } ∗ 0.5 = 0.00189 ψ 4 ( 1 ) = arg ⁡ max ⁡ 1 ≤ j ≤ 3 [ δ 3 ( j ) a j 1 ] = 1 δ 4 ( 2 ) = max ⁡ 1 ≤ j ≤ 3 [ δ 3 ( j ) a j 2 ] b 2 ( o 4 ) = max ⁡ { 0.00756 ∗ 0.2 , 0.01008 ∗ 0.5 , 0.0147 ∗ 0.3 } ∗ 0.6 = 0.003024 ψ 4 ( 2 ) = arg ⁡ max ⁡ 1 ≤ j ≤ 3 [ δ 3 ( j ) a j 2 ] = 2 δ 4 ( 3 ) = max ⁡ 1 ≤ ≤ 3 [ δ 3 ( j ) a j 3 ] b 3 ( o 4 ) = max ⁡ { 0.00756 ∗ 0.3 , 0.01008 ∗ 0.2 , 0.0147 ∗ 0.5 } ∗ 0.3 = 0.002205 ψ 4 ( 3 ) = arg ⁡ max ⁡ 1 ≤ j ≤ 3 [ δ 3 ( j ) a j 3 ] = 3 \begin{array}{c} \delta_{4}(1)=\max _{1 \leq j \leq 3}\left[\delta_{3}(j) a_{j 1}\right] b_{1}\left(o_{4}\right)=\max \{0.00756 * 0.5,0.01008 * 0.3,0.0147 * 0.2\} * 0.5=0.00189 \\ \psi_{4}(1)=\arg \max _{1 \leq j \leq 3}\left[\delta_{3}(j) a_{j 1}\right]=1 \\ \delta_{4}(2)=\max _{1 \leq j \leq 3}\left[\delta_{3}(j) a_{j 2}\right] b_{2}\left(o_{4}\right)=\max \{0.00756 * 0.2,0.01008 * 0.5,0.0147 * 0.3\} * 0.6=0.003024 \\ \psi_{4}(2)=\arg \max _{1 \leq j \leq 3}\left[\delta_{3}(j) a_{j 2}\right]=2 \\ \delta_{4}(3)=\max _{1 \leq \leq 3}\left[\delta_{3}(j) a_{j 3}\right] b_{3}\left(o_{4}\right)=\max \{0.00756 * 0.3,0.01008 * 0.2,0.0147 * 0.5\} * 0.3=0.002205 \\ \psi_{4}(3)=\arg \max _{1 \leq j \leq 3}\left[\delta_{3}(j) a_{j 3}\right]=3 \end{array} δ4(1)=max1j3[δ3(j)aj1]b1(o4)=max{0.007560.5,0.010080.3,0.01470.2}0.5=0.00189ψ4(1)=argmax1j3[δ3(j)aj1]=1δ4(2)=max1j3[δ3(j)aj2]b2(o4)=max{0.007560.2,0.010080.5,0.01470.3}0.6=0.003024ψ4(2)=argmax1j3[δ3(j)aj2]=2δ4(3)=max13[δ3(j)aj3]b3(o4)=max{0.007560.3,0.010080.2,0.01470.5}0.3=0.002205ψ4(3)=argmax1j3[δ3(j)aj3]=3
  3. 最终结果:

最优路径终点: i 4 ∗ = arg ⁡ max ⁡ 1 ≤ j ≤ 3 [ δ a ( i ) ] = 2 i_{4}^{*}=\arg \max _{1 \leq j \leq 3}\left[\delta_{a}(i)\right]=2 i4=argmax1j3[δa(i)]=2
最优路径概率: P ∗ = max ⁡ 1 ≤ j ≤ 3 δ 4 ( i ) = δ 4 ( 2 ) = 0.003024 P^{*}=\max _{1 \leq j \leq 3} \delta_{4}(i)=\delta_{4}(2)=0.003024 P=max1j3δ4(i)=δ4(2)=0.003024
4. 最优路径:
对于t=3,2,1有, i t ∗ = ψ t + 1 ( i t + 1 ∗ ) i_{t}^{*}=\psi_{t+1}\left(i_{t+1}^{*}\right) it=ψt+1(it+1)
于是有,
i 3 ∗ = ψ 4 ( i 4 ∗ ) = ψ 4 ( 2 ) = 2 , i 2 ∗ = ψ 3 ( i 3 ∗ ) = ψ 3 ( 2 ) = 2 , i 1 ∗ = ψ 2 ( i 2 ∗ ) = ψ 2 ( 2 ) = 3 i_{3}^{*}=\psi_{4}\left(i_{4}^{*}\right)=\psi_{4}(2)=2, \quad i_{2}^{*}=\psi_{3}\left(i_{3}^{*}\right)=\psi_{3}(2)=2, \quad i_{1}^{*}=\psi_{2}\left(i_{2}^{*}\right)=\psi_{2}(2)=3 i3=ψ4(i4)=ψ4(2)=2,i2=ψ3(i3)=ψ3(2)=2,i1=ψ2(i2)=ψ2(2)=3
所以最优的状态序列为: I ∗ = ( i 1 ∗ , i 2 ∗ , i 3 ∗ , i 4 ∗ ) = ( 3 , 2 , 2 , 2 ) I^{*}=\left(i_{1}^{*}, i_{2}^{*}, i_{3}^{*}, i_{4}^{*}\right)=(3,2,2,2) I=(i1,i2,i3,i4)=(3,2,2,2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值