CNN中各种卷积核

一、卷积概念

通俗易懂的说,就是,输出 = 输入 * 系统。

对于图像处理来说,用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到该点的卷积值。对图像上的每个点都这样处理。由于多数模板都对称,所以模板不旋转。

卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。 把一个点的像素值用它周围的点的像素值的加权平均代替。
 

二、CNN中的一些卷积

1:普通卷积:没啥好说的,比较大众的一种卷积。

其有两个缺点

  • 一是使用局部操作,不能直接得到比较大的范围甚至图像全局的特征,且卷积核是固定的形状如3x3大小,对物体的形状、姿态变化缺少适应性。
  • 二是当特征的通道数量大了以后,卷积核的参数也变得庞大,会增加许多运算开销。

Feature Map尺寸计算公式:

假设输入 (N, C_{in}, H_{in}, W_{in}) ,卷积操作后输出 (N, C_{out}, H_{out}, W_{out}) ,计算公式为

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值