1 前缀表达式介绍
前缀表达式又称波兰式,前缀表达式的运算符位于操作数之前
举例说明: (3+4)×5-6 对应的前缀表达式就是 - × + 3 4 5 6
1.1 前缀表达式的计算机求值过程
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。
1.2 前缀表达式的计算过程举例说明
例如: (3+4)×5-6 对应的前缀表达式就是 - × + 3 4 5 6 , 针对前缀表达式求值步骤如下:
- 从右至左扫描,将6、5、4、3压入堆栈
- 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素),计算出3+4的值,得7,再将7入栈
- 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈
- 最后是-运算符,计算出35-6(先弹出的数—后弹出的数)的值,即29,由此得出最终结果
2 中缀表达式介绍
中缀表达式就是常见的运算表达式,如(3+4)×5-6
中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作(前面我们讲的案例就能看的这个问题),因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式.)
关于用中缀表达式实现简单四则运算计算器情况下面链接对应的博文
https://blog.youkuaiyun.com/weixin_40139164/article/details/108964924
3 后缀表达式介绍
后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后
举例说明: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 –
3.1 后缀表达式的计算机求值过程
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
3.2 后缀表达式的计算过程举例说明
例如: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 - , 针对后缀表达式求值步骤如下:
- 从左至右扫描,将3和4压入堆栈;
- 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
- 将5入栈;
- 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
- 将6入栈;
- 最后是-运算符,计算出35-6(后弹出的数—先弹出的数)的值,即29,由此得出最终结果
3.3 实现逆波兰计算器
代码实现:
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//先定义给逆波兰表达式
//(30+4)×5-6 => 30 4 + 5 × 6 - => 164
// 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / +
//测试
//说明为了方便,逆波兰表达式 的数字和符号使用空格隔开
//String suffixExpression = "30 4 + 5 * 6 -";
String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76
//思路
//1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中
//2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算
List<String> list = getListString(suffixExpression);
System.out.println("rpnList=" + list);
int res = calculate(list);
System.out.println("计算的结果是=" + res);
}
//将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
public static List<String> getListString(String suffixExpression) {
//将 suffixExpression 分割
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<String>();
for(String ele: split) {
list.add(ele);
}
return list;
}
//完成对逆波兰表达式的运算
/*
* 1)从左至右扫描,将3和4压入堆栈;
2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
3)将5入栈;
4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
5)将6入栈;
6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate(List<String> ls) {
// 创建栈, 只需要一个栈即可
Stack<String> stack = new Stack<String>();
// 遍历 ls
for (String item : ls) {
// 这里使用正则表达式来取出数
if (item.matches("\\d+")) { // 匹配的是多位数
// 入栈
stack.push(item);
} else {
// pop出两个数,并运算, 再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
//把res 入栈
stack.push("" + res);
}
}
//最后留在stack中的数据是运算结果
return Integer.parseInt(stack.pop());
}
}
4 中缀表达式转后缀表达式
思路分析:
1、初始化两个栈:运算符栈s1和储存中间结果的栈s2;
2、从左至右扫描中缀表达式;
3、遇到操作数时,将其压s2;
4、遇到运算符时,比较其与s1栈顶运算符的优先级:
4.1如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
4.2否则,若优先级比栈顶运算符的高,也将运算符压入s1;
4.3否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较;
5、遇到括号时: (1) 如果是左括号“(”,则直接压入s1 (2) 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
6、重复步骤2至5,直到表达式的最右边
7、将s1中剩余的运算符依次弹出并压入s2
8、依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式
举例说明:
将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下
结果为:"1 2 3 + 4 × + 5 –"
代码实现:
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
// 完成将一个中缀表达式转成后缀表达式的功能
// 说明
// 1. 1+((2+3)×4)-5 => 转成 1 2 3 + 4 × + 5 –
// 2. 因为直接对str 进行操作,不方便,因此 先将 "1+((2+3)×4)-5" =》 中缀的表达式对应的List
// 即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
// 3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
// 即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–]
String expression = "1+((2+3)*4)-5";// 注意表达式
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
System.out.println("后缀表达式对应的List" + suffixExpreesionList); // ArrayList [1,2,3,+,4,*,+,5,–]
System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ?
// 即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–]
// 方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
public static List<String> parseSuffixExpreesionList(List<String> ls) {
// 定义两个栈
Stack<String> s1 = new Stack<String>(); // 符号栈
// 说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
// 因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
// Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
// 遍历ls
for (String item : ls) {
// 如果是一个数,加入s2
if (item.matches("\\d+")) {
s2.add(item);
} // 如果s1为空,则直接将此运算符入栈;
else if (s1.size() == 0) {
s1.push(item);
} // 如果是左括号“(”,则直接压入s1
else if (item.equals("(")) {
s1.push(item);
// 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
} else if (item.equals(")")) {
while (!s1.peek().equals("(")) {
s2.add(s1.pop());
}
s1.pop();// !!! 将 ( 弹出 s1栈, 消除小括号
} //栈顶运算符为左括号“(”,则直接将此运算符入栈;
else if (s1.peek().equals("(")) {
s1.push(item);
} else {
// 当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较 // 问题:我们缺少一个比较优先级高低的方法
while (s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)) {
s2.add(s1.pop());
}
// 否则,若优先级比栈顶运算符的高,也将运算符压入s1;
// 还需要将item压入栈
s1.push(item);
}
}
// 将s1中剩余的运算符依次弹出并加入s2
while (s1.size() != 0) {
s2.add(s1.pop());
}
return s2; // 注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List
}
// 方法:将 中缀表达式转成对应的List
// s="1+((2+3)×4)-5";
public static List<String> toInfixExpressionList(String s) {
// 定义一个List,存放中缀表达式 对应的内容
List<String> ls = new ArrayList<String>();
int i = 0; // 这时是一个指针,用于遍历 中缀表达式字符串
String str; // 对多位数的拼接
char c; // 每遍历到一个字符,就放入到c
do {
// 如果c是一个非数字,我需要加入到ls
if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57) {
ls.add("" + c);
i++; // i需要后移
} else { // 如果是一个数,需要考虑多位数
str = ""; // 先将str 置成"" '0'[48]->'9'[57]
while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57) {
str += c;// 拼接
i++;
}
ls.add(str);
}
} while (i < s.length());
return ls;// 返回
}
// 将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
public static List<String> getListString(String suffixExpression) {
// 将 suffixExpression 分割
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<String>();
for (String ele : split) {
list.add(ele);
}
return list;
}
// 完成对逆波兰表达式的运算
/*
* 1)从左至右扫描,将3和4压入堆栈; 2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈; 3)将5入栈;
* 4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈; 5)将6入栈; 6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate(List<String> ls) {
// 创建栈, 只需要一个栈即可
Stack<String> stack = new Stack<String>();
// 遍历 ls
for (String item : ls) {
// 这里使用正则表达式来取出数
if (item.matches("\\d+")) { // 匹配的是多位数
// 入栈
stack.push(item);
} else {
// pop出两个数,并运算, 再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
// 把res 入栈
stack.push("" + res);
}
}
// 最后留在stack中的数据是运算结果
return Integer.parseInt(stack.pop());
}
}
//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
private static int ADD = 1;
private static int SUB = 1;
private static int MUL = 2;
private static int DIV = 2;
// 写一个方法,返回对应的优先级数字
public static int getValue(String operation) {
int result = 0;
switch (operation) {
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
default:
System.out.println("不存在该运算符" + operation);
break;
}
return result;
}
}