SSD网络结构(vgg16)

本文介绍了一种基于SSD的目标检测网络实现方法,详细展示了使用TensorFlow和Keras搭建网络的过程,包括卷积层、最大池化层、批量归一化等组件的应用,并通过自定义函数整合不同层级的特征图。
import tensorflow as tf
slim = tf.contrib.slim
import numpy as np

import keras
from keras.layers import Conv2D, MaxPooling2D, Lambda, Input, Dense, Flatten, BatchNormalization
from keras.models import Model
from keras.layers.core import Dropout
from keras import optimizers
from keras.callbacks import ReduceLROnPlateau,TensorBoard

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

from sklearn.preprocessing import OneHotEncoder

def slim_arg_scope_with_bn(weight_decay=0.00001,
                 activation_fn=tf.nn.relu,
                 batch_norm_decay=0.997,
                 batch_norm_epsilon=1e-5,
                 normalizer_fn = slim.batch_norm,
                 batch_norm_scale=True):

    batch_norm_params = {
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
      }

    with slim.arg_scope(
          [slim.conv2d],
          weights_regularizer=slim.l2_regularizer(weight_decay),
          weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
          activation_fn=activation_fn,
          normalizer_fn=normalizer_fn,
          normalizer_params=batch_norm_params,
          padding="same"):

        with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
            return arg_sc 

net = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(image)
net = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(net)
net = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='block1_pool')(net)
net = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(net)
net = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(net)
net = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='block2_pool')(net)
net = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(net)
net = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(net)
net = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(net)
net = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='block3_pool')(net)
    conv4_clf_reg = slim.conv2d(net, (classes_ + 4)* num_default_pic, [3, 3], stride=1, scope="conv4_3_clf")

with tf.name_scope("SSD") as scope:
    with slim.arg_scope(slim_arg_scope_with_bn()):

        net = slim.conv2d(net, 1024, [3, 3], stride=2, scope=scope+"conv7_1")
        net = slim.conv2d(net, 1024, [1, 1], stride=1, scope=scope+"conv7_2")
        fc7_clf_reg = slim.conv2d(net, (classes_ + 4)* 4, [3, 3], stride=1, padding="same", scope=scope+"7_clf")

        net = slim.conv2d(net, 256, [1, 1], stride=1, scope=scope+"conv8_1")
        net = slim.conv2d(net, 512, [3, 3], stride=2, scope=scope+"conv8_2")
        conv8_clf_reg = slim.conv2d(net, (classes_ + 4)* 4, [3, 3], stride=1, padding="same", scope=scope+"8_clf")

        net = slim.conv2d(net, 128, [1, 1], stride=1, scope=scope+"conv9_1")
        net = slim.conv2d(net, 256, [3, 3], stride=2, scope=scope+"conv9_2")
        conv9_clf_reg = slim.conv2d(net, (classes_ + 4)* 4, [3, 3], stride=1, padding="same", scope=scope+"9_clf")

        net = slim.conv2d(net, 128, [1, 1], stride=1, scope=scope+"conv10_1")
        net = slim.conv2d(net, 256, [3, 3], stride=1, padding="valid", scope=scope+"conv10_2")
        conv10_clf_reg = slim.conv2d(net, (classes_ + 4)* 4, [3, 3], stride=1, padding="same", scope=scope+"10_clf")

        net = slim.conv2d(net, 128, [1, 1], stride=1, scope=scope+"conv11_1")
        net = slim.conv2d(net, 256, [3, 3], stride=1, padding="valid", scope=scope+"conv11_2")
        conv11_clf_reg = slim.conv2d(net, (classes_ + 4)* 4, [3, 3], stride=1, padding="same", scope=scope+"11_clf") 

def flatten_and_concat_layer(clf=True ,*args):

    if clf:
        flatten_layer = [slim.flatten(i[:, :, :, :84]) for i in args]
        concat_layer = tf.concat(flatten_layer, 1)
        L = concat_layer.get_shape().as_list()[1] / classes_
        concat_layer = tf.reshape(concat_layer, [-1, int(L), classes_])
    else:
        flatten_layer = [slim.flatten(i[:, :, :, 84:]) for i in args]
        concat_layer = tf.concat(flatten_layer, 1)

    return  concat_layer

cls_layer = flatten_and_concat_layer(True, conv4_clf_reg, fc7_clf_reg, conv8_clf_reg, conv9_clf_reg, conv10_clf_reg, conv11_clf_reg)
reg_layer = flatten_and_concat_layer(False, conv4_clf_reg, fc7_clf_reg, conv8_clf_reg, conv9_clf_reg, conv10_clf_reg, conv11_clf_reg)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值