这篇文章和大家聊聊矩阵的初等变换和矩阵的秩。
矩阵的初等变换这个概念可能在很多人听来有些陌生,但其实我们早在初中的解多元方程组的时候就用过它。只不过在课本当中,这种方法叫做消元法。我们先来看一个课本里的例子:

假设我们要解这个方程,怎么做呢?
首先,我们把(1)式加到(2)式,把(4)式加到(3)式,把(1)式乘6加到(4)式可以得到:

我们再把(4)式减去(2)式乘5,可以解出x4=−3:

我们把x4=−3带入,可以解出x1, x2, x3。

因为消元之后,方程组的数量少于变量的数量,我们无法解出所有的变量。其中的x3可以取任何值。
上面这个计算的方法我们都非常熟悉,如果我们用一个矩阵来表示所有的次数,那么这个矩阵D可以写成:

那么,我们刚才消元的过程,其实就是对这个矩阵做初等变换。我们把这个过程总结一下,矩阵的初等变换操作包含以下三种:
- 对调两行