304 Range Sum Query 2D - Immutable

本文介绍了一种高效算法,用于解决二维矩阵中任意子矩阵元素之和的问题。通过预处理构建一个辅助矩阵,实现快速查询,避免了每次求和时重复计算,大大提高了效率。

1 题目

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

2 尝试解

2.1 分析

问题303的升级版,给定一个二维整数矩阵matrix,求其中任何一个子矩阵内整数之和。可以直接将待求区域的整数相加,但是复杂度为O(mn),与待求区域面积成正比。用一个与matrix同样大小的矩阵怎sum_from_topleft记录从左上角到每一个位置构成的矩阵内整数之和。则sumRange(row1,col1,row2,col2) = sum_from_topleft(row2,col2)+sum_from_topleft(row1,col1)-sum_from_topleft(row1-1,col2)-sum_from_topleft(row2,col1-1)。

2.2 代码

class NumMatrix {
public:
    NumMatrix(vector<vector<int>>& matrix) {
        sum_from_topleft = matrix;
        for(int i = 0; i < matrix.size();i++){
            for(int j = 0; j < matrix[i].size();j++){
                sum_from_topleft[i][j] = matrix[i][j]-(i>0&&j>0?sum_from_topleft[i-1][j-1]:0)+(i>0?sum_from_topleft[i-1][j]:0)+(j>0?sum_from_topleft[i][j-1]:0);
            }
        }
    }
    
    int sumRegion(int row1, int col1, int row2, int col2) {
        return sum_from_topleft[row2][col2]-(row1>0?sum_from_topleft[row1-1][col2]:0)-(col1>0?sum_from_topleft[row2][col1-1]:0)+(row1>0&&col1>0?sum_from_topleft[row1-1][col1-1]:0);
    }
private:
    vector<vector<int>> sum_from_topleft;
};

3 标准解

class NumMatrix {
private:
    int row, col;
    vector<vector<int>> sums;
public:
    NumMatrix(vector<vector<int>> &matrix) {
        row = matrix.size();
        col = row>0 ? matrix[0].size() : 0;
        sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
        for(int i=1; i<=row; i++) {
            for(int j=1; j<=col; j++) {
                sums[i][j] = matrix[i-1][j-1] + 
                             sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] ;
            }
        }
    }

    int sumRegion(int row1, int col1, int row2, int col2) {
        return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值