参考文献依然是放前面:https://blog.youkuaiyun.com/caicaiatnbu/category_9096319.html
darknet版本: https://github.com/AlexeyAB/darknet,与原始的版本还是有一点区别的。
进入代码:
1.matrix.h
#ifndef MATRIX_H
#define MATRIX_H
#include "darknet.h"
//typedef struct matrix{
// int rows, cols;
// float **vals;
//} matrix;
//与原版不同,这里添加定义了结构体model,用到了matrix啊,这个结构体定义在darknet.h里,结构如上注释
typedef struct {
int *assignments;
matrix centers;
} model;
#ifdef __cplusplus
extern "C" {
#endif
//函数在matrix.c里看
model do_kmeans(matrix data, int k);
matrix make_matrix(int rows, int cols);
void free_matrix(matrix m);
void print_matrix(matrix m);
matrix csv_to_matrix(char *filename);
void matrix_to_csv(matrix m);
matrix hold_out_matrix(matrix *m, int n);
float matrix_topk_accuracy(matrix truth, matrix guess, int k);
void matrix_add_matrix(matrix from, matrix to);
void scale_matrix(matrix m, float scale);
matrix resize_matrix(matrix m, int size);
float *pop_column(matrix *m, int c);
#ifdef __cplusplus
}
#endif
#endif
2.matrix.c
#include "matrix.h"
#include "utils.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
//释放矩阵m的空间
void free_matrix(matrix m)
{
int i;
for(i = 0; i < m.rows; ++i) free(m.vals[i]);//循环逐行释放空间
free(m.vals);
}
//具体是什么操作,要看使用位置,等我遇见了再来看
//不清楚truth和guess具体指代值
float matrix_topk_accuracy(matrix truth, matrix guess, int k)
{
int* indexes = (int*)xcalloc(k, sizeof(int));//临时空间
int n = truth.cols;//truth矩阵的列
int i,j;
int correct = 0;
for(i = 0; i < truth.rows; ++i){
//找到guess矩阵中,大小排在前k个的值,并返回前k个值对应的index放在indexes中
top_k(guess.vals[i], n, k, indexes);//top_k定义在utils.c中
//遍历top_k的数据
for(j = 0; j < k; ++j){
int class_id = indexes[j];
if(truth.vals[i][class_id]){//对应 truth.vals[i][class] 位置是否非0
++correct;
break;
}
}
}
free(indexes);// 释放index
return (float)correct/truth.rows;// 返回比例。
}
//矩阵与常数乘法操作,将矩阵m中每个元素都放大scale倍
void scale_matrix(matrix m, float scale)
{
int i,j;
for(i = 0; i < m.rows; ++i){
for(j = 0; j < m.cols; ++j){
m.vals[i][j] *= scale;
}
}
}
//矩阵的行数和列数进行resize操作,resize矩阵大小是size * size
matrix resize_matrix(matrix m, int size)
{
int i;
if (m.rows == size) return m;//行数恰好等于size大小时,不做缩放
if (m.rows < size) {//行数小于size时
//xrealloc为重构原有存储空间函数,定义在utils.c中
/*
函数功能:动态调整内存,先判断当前的指针是否有足够的连续空间,如果有,则扩大mem_address指向的地址,
并且将mem_address返回,如果空间不够,先按照newsize指定的大小分配空间,将原有数据全部拷贝到新分配的内存区域,
而后对原来meme_address所指向的内存区域进行释放【这里是自动释放,不需要手动释放】,同时返回新分配内存区域的首地址。
如果失败则返回空指针NULL;
*/
m.vals = (float**)xrealloc(m.vals, size * sizeof(float*)); // 重新申请内存空间
for (i = m.rows; i < size; ++i) {
// 每一行的存储空间也要重新申请,每一行保存size 个数据
m.vals[i] = (float*)xcalloc(m.cols, sizeof(float));
}
} else if (m.rows > size) {// 调整后矩阵行数减少
for (i = size; i < m.rows; ++i) {// 释放多余的存储空间
free(m.vals[i]);
}
m.vals = (float**)xrealloc(m.vals, size * sizeof(float*));// 分配每一行存储空间,每一行保存size 个数据
}
m.rows = size;
return m; // m是一个size*size 大小的矩阵
}
//矩阵加法
void matrix_add_matrix(matrix from, matrix to)
{
assert(from.rows == to.rows && from.cols == to.cols);
int i,j;
for(i = 0; i < from.rows; ++i){
for(j = 0; j < from.cols; ++j){
to.vals[i][j] += from.vals[i][j];
}
}
}
//创建大小一定的矩阵
matrix make_matrix(int rows, int cols)
{
int i;
matrix m;
m.rows = rows;
m.cols = cols;
m.vals = (float**)xcalloc(m.rows, sizeof(float*));//创建空间
for(i = 0; i < m.rows; ++i){
m.vals[i] = (float*)xcalloc(m.cols, sizeof(float));//创建空间
}
return m;
}
//从矩阵中采样m行数据,返回采样后的结果;
matrix hold_out_matrix(matrix *m, int n)
{
int i;
matrix h;
h.rows = n;
h.cols = m->cols;
h.vals = (float**)xcalloc(h.rows, sizeof(float*));//创建返回的采样矩阵空间
for(i = 0; i < n; ++i){//循环需要的采样次数
int index = rand()%m->rows;//随机采样一行
h.vals[i] = m->vals[index];//赋值
m->vals[index] = m->vals[--(m->rows)];// 把最后一行的数据覆盖到 index行上,填充?
}
return h;
}
//获取矩阵中某一列数据,并把该列删除掉,同时返回删除的值
float *pop_column(matrix *m, int c)
{
float* col = (float*)xcalloc(m->rows, sizeof(float));//创建返回数组
int i, j;
for(i = 0; i < m->rows; ++i){//按行循环,删除该行该列的值
col[i] = m->vals[i][c];//存储要被删掉的值
for(j = c; j < m->cols-1; ++j){
m->vals[i][j] = m->vals[i][j+1];//将删除掉的列后面的列往前移动,补满
}
}
--m->cols;//将列数-1
return col;//返回删除值
}
//读文件,加载矩阵
matrix csv_to_matrix(char *filename)
{
FILE *fp = fopen(filename, "r");
if(!fp) file_error(filename);//判断文件是否能读
matrix m;//返回的矩阵
m.cols = -1;
char *line;
int n = 0;
int size = 1024;//初步设定矩阵有1024行
m.vals = (float**)xcalloc(size, sizeof(float*));//分配空间
while((line = fgetl(fp))){//按行读取字符数据
//fgetl和count_fields定义在uitls.c中
//count_fields:统计取字符串中有多少空格和',', 遇到第一个'\0'字符结束
//','和空格作为字符的分割,也就是统计存储时矩阵需要多少列
if(m.cols == -1) m.cols = count_fields(line);
if(n == size){ //超过设定行数,则扩充矩阵存储空间
size *= 2;
m.vals = (float**)xrealloc(m.vals, size * sizeof(float*));
}
// parse_fields定义在uitls.c中
//解析字符数组中m.cols个float小数,返回是一个float类型指针
m.vals[n] = parse_fields(line, m.cols);
free(line);
++n;
}
// 之前开辟的空间是1024的整数倍,此时需要根据n来实际分配内存空间。
m.vals = (float**)xrealloc(m.vals, n * sizeof(float*));
m.rows = n;
return m;// 返回结果
}
//可视化矩阵m,打印
void matrix_to_csv(matrix m)
{
int i, j;
for(i = 0; i < m.rows; ++i){
for(j = 0; j < m.cols; ++j){
if(j > 0) printf(",");
printf("%.17g", m.vals[i][j]);//自动选择合适的表示法输出
}
printf("\n");
}
}
//可视化打印矩阵m
void print_matrix(matrix m)
{
int i, j;
printf("%d X %d Matrix:\n",m.rows, m.cols);//打印行和列数
printf(" __");
for(j = 0; j < 16*m.cols-1; ++j) printf(" ");
printf("__ \n");
printf("| ");
for(j = 0; j < 16*m.cols-1; ++j) printf(" ");
printf(" |\n");
for(i = 0; i < m.rows; ++i){
printf("| ");
for(j = 0; j < m.cols; ++j){
printf("%15.7f ", m.vals[i][j]);//打印浮点数内容
}
printf(" |\n");
}
printf("|__");
for(j = 0; j < 16*m.cols-1; ++j) printf(" ");
printf("__|\n");
}
matrix make_matrix(int rows, int cols);
//先申明,防止找不到函数
void copy(float *x, float *y, int n);
float dist(float *x, float *y, int n);
int *sample(int n);
//找到离datum最近的中心点,返回其位置
int closest_center(float *datum, matrix centers)
{
int j;
int best = 0;
float best_dist = dist(datum, centers.vals[best], centers.cols);
for (j = 0; j < centers.rows; ++j) {
float new_dist = dist(datum, centers.vals[j], centers.cols);
if (new_dist < best_dist) {
best_dist = new_dist;//值越小就交换最优值
best = j;
}
}
return best;
}
//closest_center函数找到离datum最近的中心点位置,返回他们之间的距离
float dist_to_closest_center(float *datum, matrix centers)
{
int ci = closest_center(datum, centers);
return dist(datum, centers.vals[ci], centers.cols);
}
//kmeans聚类,循环样本,判断data中的每一个样本距离哪个centers更近,就属于哪一个centers的类别,并存放到assignments中去
//先看最后的函数do_kmeans,调用的这个函数
int kmeans_expectation(matrix data, int *assignments, matrix centers)
{
int i;
int converged = 1;//判断是否停止更新的标识符
for (i = 0; i < data.rows; ++i) {//循环每一组样本的宽高
//data中的宽高与初始的centers宽高做距离计算,获得最近的距离的index,
//也就是获得对应样本的类别(距离哪个center更近,就属于哪个center的类别范围中)
int closest = closest_center(data.vals[i], centers);
//如果获得的类别,与原有存储中的类别不一样,则converged =0,更新标识符
if (closest != assignments[i]) converged = 0;
assignments[i] = closest;//更新相应的assignments(类别)值
}
return converged;返回更新的判断标识符
}
//看起来这里是kmeans生成anchor,
//assignments为m*1的数组,m为data的行数,存放的是data样本中每一个样本的类别
//data需要用到的训练样本的宽高
//centers初始聚类的宽高
void kmeans_maximization(matrix data, int *assignments, matrix centers)
{
//初始化矩阵,为备份做准备
matrix old_centers = make_matrix(centers.rows, centers.cols);
int i, j;
int *counts = (int*)xcalloc(centers.rows, sizeof(int));//分配空间
//第一个循环,备份原有的center
for (i = 0; i < centers.rows; ++i) {
for (j = 0; j < centers.cols; ++j) {
old_centers.vals[i][j] = centers.vals[i][j];//将center中的值放到old中
centers.vals[i][j] = 0;//center清空
}
}
//第二个循环,计算每个类别包含样本的样本值总和,和每个类别中包含的总样本数
//counts中存放的是每一个类别包含的样本总数
//centers这个循环后,存放的是该center类别包含的样本宽高值的总和
for (i = 0; i < data.rows; ++i) {//按行循环所有的样本
++counts[assignments[i]];//
for (j = 0; j < data.cols; ++j) {//
centers.vals[assignments[i]][j] += data.vals[i][j];
}
}
//第三个循环,计算新的center值=样本宽高总值/类别包含样本总数
for (i = 0; i < centers.rows; ++i) {
if (counts[i]) {
for (j = 0; j < centers.cols; ++j) {
//对每个类别刚刚计算的值除总数,计算平均值,更新centers
centers.vals[i][j] /= counts[i];
}
}
}
//第四个循环,补上这一次没有更新的center值,将备份的值再赋给新center
for (i = 0; i < centers.rows; ++i) {
for (j = 0; j < centers.cols; ++j) {
//如果有没计算的值,把原来的值再放回去
if(centers.vals[i][j] == 0) centers.vals[i][j] = old_centers.vals[i][j];
}
}
free(counts);
free_matrix(old_centers);//释放临时空间
}
//随机生成centers
void random_centers(matrix data, matrix centers) {
int i;
int *s = sample(data.rows);//获得打乱的样本行数index值
for (i = 0; i < centers.rows; ++i) {//循环centers矩阵
copy(data.vals[s[i]], centers.vals[i], data.cols);//将按照打乱的index将data中的值放入centers中,获得初始随机的anchor值
}
free(s);
}
//利用sample生成随机的数组,数组的内容是数组对应的index
int *sample(int n)
{
int i;
int* s = (int*)xcalloc(n, sizeof(int));//构建返回数组空间
for (i = 0; i < n; ++i) s[i] = i;//赋初值,值为数组index
for (i = n - 1; i >= 0; --i) {
int swap = s[i];
int index = rand() % (i + 1);
s[i] = s[index];
s[index] = swap;//随机交换index,打乱存放的index
}
return s;//返回
}
//计算两个box之间iou距离,传入的x,y分别对应box的宽高
float dist(float *x, float *y, int n)
{
//printf(" x0 = %f, x1 = %f, y0 = %f, y1 = %f \n", x[0], x[1], y[0], y[1]);
float mw = (x[0] < y[0]) ? x[0] : y[0];
float mh = (x[1] < y[1]) ? x[1] : y[1];
float inter = mw*mh;
float sum = x[0] * x[1] + y[0] * y[1];
float un = sum - inter;
float iou = inter / un;
return 1 - iou;
}
//赋值数组值
void copy(float *x, float *y, int n)
{
int i;
for (i = 0; i < n; ++i) y[i] = x[i];
}
//做kmeans聚类
//data应该是m*2的矩阵,内容是训练样本box的宽,高
//k是需要的anchor数量,一般6或9
model do_kmeans(matrix data, int k)
{
matrix centers = make_matrix(k, data.cols);//初始化矩阵
//assignments将存放的是data样本中每一个样本的类别
//(就是距离哪个centers更近,就属于哪个类别)
int* assignments = (int*)xcalloc(data.rows, sizeof(int));//构建数组空间,大小为m*sizeof(int),m是我假设的data的行数,
//smart_centers(data, centers);
//获得随机的center(即anchor)值
random_centers(data, centers); // IoU = 67.31% after kmeans
/*
// IoU = 63.29%, anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
centers.vals[0][0] = 10; centers.vals[0][1] = 13;
centers.vals[1][0] = 16; centers.vals[1][1] = 30;
centers.vals[2][0] = 33; centers.vals[2][1] = 23;
centers.vals[3][0] = 30; centers.vals[3][1] = 61;
centers.vals[4][0] = 62; centers.vals[4][1] = 45;
centers.vals[5][0] = 59; centers.vals[5][1] = 119;
centers.vals[6][0] = 116; centers.vals[6][1] = 90;
centers.vals[7][0] = 156; centers.vals[7][1] = 198;
centers.vals[8][0] = 373; centers.vals[8][1] = 326;
*/
// range centers [min - max] using exp graph or Pyth example
//如果anchor数量为1,则通过kmeans_maximization函数获得anchor值
//不需要使用kmeans_expectation函数先给data中的样本分类,因为只有一个类别。
if (k == 1) kmeans_maximization(data, assignments, centers);
int i;
//如果k>1哦,就需要使用kmeans_expectation函数先给data中的样本分类,将类别存放到assignments中
//如果kmeans_expectation返回0,也就是说最近邻值有更新,就继续循环,否则停止更新。
for(i = 0; i < 1000 && !kmeans_expectation(data, assignments, centers); ++i) {
kmeans_maximization(data, assignments, centers);
}
printf("\n iterations = %d \n", i);
model m;
m.assignments = assignments;
m.centers = centers;
return m;
}