目标检测算法综述

论文名称:《 Deep Learning for Generic Object Detection: A Survey 》

论文下载:https://arxiv.org/abs/1809.02165

对应代码:https://github.com/hoya012/deep_learning_object_detection#2014

绪论:
一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。
目标检测研究的几个方面:
领先的检测框架、基础性的子问题(包括目标特征表示、目标提议生成、形境信息建模和训练策略)、评估问题(尤其是基准数据集、评估指标和当前最佳表现)。最后,我们会指出有研究潜力的未来研究方向。
目标检测和其它图像处理领域的关系:
作为图像理解和计算机视觉的基石,目标检测是解决分割、场景理解、目标追踪、图像描述、事件检测和活动识别等更复杂更高层次的视觉任务的基础。
目标检测的应用场景:
目标检

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值