HDU 4324 (图论,拓扑排序)

题意:
有向图找三元环


思路:
根据题意,每两个点之间一定有切仅有一条有向边,所以图中不存在三元环的情况只有一种,点入度从小到大排序后为1到n。


代码:

#include <iostream>
#include <iomanip>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <map>
#include <list>
#include <set>
#include <stack>
#include <queue>
#include <string>
#include <sstream>
#define pb push_back
#define X first
#define Y second
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define pii pair<int,int>
#define qclear(a) while(!a.empty())a.pop();
#define lowbit(x) (x&-x)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define mst(a,b) memset(a,b,sizeof(a))
#define cout3(x,y,z) cout<<x<<" "<<y<<" "<<z<<endl
#define cout2(x,y) cout<<x<<" "<<y<<endl
#define cout1(x) cout<<x<<endl
#define IOS std::ios::sync_with_stdio(false)
#define SRAND srand((unsigned int)(time(0)))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;
using namespace std;
const double PI=acos(-1.0);
const int INF=0x3f3f3f3f;
const ll mod=998244353;
const double eps=1e-5;
const int maxn=2005;
const int maxm=10005;

int n;
char maps[maxn][maxn];
int indeg[maxn];
bool ok=0;
void solve() {
    int t;
    int kase=1;
    sd(t);
    while(t--) {
        mst(indeg,0);
        ok=0;
        sd(n);
        getchar();
        for(int i=0; i<n; i++) {
            for(int j=0; j<n; j++) {
                maps[i][j]=getchar();
                if(maps[i][j]=='0')
                    indeg[i]++;
            }
            getchar();
        }
        sort(indeg,indeg+n);
        for(int i=0; i<n; i++) {
            if(indeg[i]!=i+1) {
                ok=1;
                continue;
            }
        }
        printf("Case #%d: ",kase++);
        if(ok)
            printf("Yes\n");
        else
            printf("No\n");
    }
    return ;
}
int main() {
#ifdef LOCAL
    freopen("in.txt","r",stdin);
//    freopen("out.txt","w",stdout);
#else
    //    freopen("","r",stdin);
    //    freopen("","w",stdout);
#endif
    solve();
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值