[coursera/dl&nn/week4]Deep Neural Network(summary&question)

本文深入探讨了深度神经网络的基本概念,包括多层神经网络结构、前向传播与反向传播的过程,以及如何正确设置矩阵维度等内容。此外还讨论了深层表示的重要性及超参数的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep learning is an experiment base on hyperparameters.

I strongly encourage you to find a paper to write down forward and backward propagate.

You need to review how to compute the derivative of metrics.

Week4 Deep Neural Network

4.1 Deep L-layer neural network


n[0]=nx=3 ,  n[1]=5 ,  n[2]=5n[3]=3n[4]= n[L]=1

4.2 Forward Propagate in a Deep Network

We need a for-loop to compute these hidden layers.

compute lth layer neuron


vectorizing 



4.3 Getting your matrix dimensions right

This is important for us to modify our bug.

for  lth layer neuron in m training examples:

n[l]: num of neurons in lth layer

n[l-1]: num of neurons in (l-1)th layer

Z.shape()=(n[l],m)

W.shape()=(n[l],n[l-1])

X.shape()=(n[l-1],m)

b.shape()=(n[l],m)



4.4 Why deep representations

small: small amount of hidden nurons 

deep: large num of hidden layers


4.5 Building blocks of deep neural networks

The flow chat shows how deep neural networks propagate.



4.6 Forward and Backward Propagation

Backward:


vectorizing:


4.7 Hyperparameters

learning rate

#iterations

#hidden layer L

#hidden units


4.8 points: what does this have to do with the brain

mapping: x to y


question:

wrong answer:
1.the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.













评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值