随笔

Pandas–sort_values

## 参数    
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')  
#### 参数说明    
axis:{0 or ‘index’, 1 or ‘columns’}, default 0,默认按照索引排序,即纵向排序,如果为1,则是横向排序    
by:str or list of str;如果axis=0,那么by="列名";如果axis=1,那么by="行名";  
ascending:布尔型,True则升序,可以是[True,False],即第一字段升序,第二个降序  
inplace:布尔型,是否用排序后的数据框替换现有的数据框  
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心  
na_position : {‘first’, ‘last’}, default ‘last’,默认缺失值排在最后面  

pandas中.value_counts()的用法

value_counts()是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中有多少重复值。
value_counts()是Series拥有的方法,一般在DataFrame中使用时,需要指定对哪一列或行使用

import pandas as pd
import numpy as np
filepath='C:\python\data_src\GFSCOFOG_03-05-2018 03-04-36-54_timeSeries\GFSCOFOG_CHA.csv'
data = pd.read_csv(filepath,encoding='utf-8')

corr()

data.corr() #相关系数矩阵,即给出了任意两个变量之间的相关系数
data.corr()[u’好’] #只显示“好”与其他感情色彩的相关系数
data[u’好’].corr(data[u’哭’]) #两个感情色彩的相关系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值