UVA10601 Cubes - 波利亚定理

Cubes

题意

给出121212根长度相等的木棒,颜色最多有666种,问能构成的本质不同的正方体数量.

题解

根据波利亚定理公式:

设X是元素集合,G是X的置换群,{u1,u2,...,uk}\{u_1,u_2,...,u_k\}{u1,u2,...,uk}kkk种颜色的集合,CCCXXX的任意着色集.这时,针对各颜色的数目的C的非等价着色数的生成函数是:
PG(u1+...+uk,u12+...+uk2,...,u1n+...+ukn)P_G{(u_1+...+u_k,u_1^2+...+u_k^2,...,u_1^n+...+u_k^n)}PG(u1+...+uk,u12+...+uk2,...,u1n+...+ukn)

  1. 我们先求出121212根木棒的颜色数,假设有kkk中,每种颜色假设有{c1,c2,...,ck}\{c_1,c_2,...,c_k\}{c1,c2,...,ck}个,注意c1+...+ck=12c_1+...+c_k=12c1+...+ck=12.

  2. 求出置换群.
    众所周知的,正方体的置换群大小是242424.
    (1)恒等变换:111
    (2)绕对面的中心旋转90,180,27090,180,27090,180,270度:3∗3=93*3 = 933=9个.
    (3)绕对边的中点连成的轴旋转180180180度:6∗1=66*1 = 661=6个.
    (4)绕体对角线旋转120,240120,240120,240度:4∗2=84*2=842=8个.
    根据上述四种情况得到的关于线元素的置换平均值为:
    PG=124(z112+6z43+3z26+8z34+6z12z25)P_G=\frac{1}{24}(z_1^{12}+6z_4^3+3z_2^6+8z_3^4+6z_1^2z_2^5)PG=241(z112+6z43+3z26+8z34+6z12z25)

  3. zi=∑u1iu2i...u6iz_i = \sum{u_1^iu_2^i...u_6^i}zi=u1iu2i...u6i代入PGP_GPG式.那么答案就是PGP_GPG函数的u1c1u2c2...ukcku_1^{c_1}u_2^{c_2}...u_k^{c_k}u1c1u2c2...ukck前的系数

  4. PGP_GPG函数的每一项都是形如(u1+...+uk)a(u12+...+uk2)b...(u1n+...+ukn)z(u_1+...+u_k)^{a}(u_1^2+...+u_k^2)^{b}...(u_1^n+...+u_k^n)^{z}(u1+...+uk)a(u12+...+uk2)b...(u1n+...+ukn)z的,我要对每个这样的式子,求u1au2b...ukzu_1^au_2^b...u_k^zu1au2b...ukz前的系数之和.每个项单独进行dfsdfsdfs就可以了.

代码

#include <iostream>
#include <algorithm>
#include <map>
#include <cstring>
#define pr(x) std::cout << #x << ':' << x << std::endl
#define rep(i,a,b) for(int i = a;i <= b;++i)

int T;
int tc[7],x[7],ox[7];
int C[13][13];

void init() {
	C[0][0] = 1;
	rep(i,1,12) {
		C[i][0] = 1;
		rep(j,1,i) {
			C[i][j] = C[i-1][j] + C[i-1][j-1];
		}
	}
}
int ans = 0;
void dfs(int dep,int mul) {
	if(dep == 5) {
		int f = 0;
		rep(i,1,6) f += x[i];
		if(!f) {
			ans += mul;
		}
		return ;
	}
	int tx[7];
	rep(i,1,6) tx[i] = x[i];
	for(int x1 = 0;x1 <= tc[dep] && dep * x1 <= tx[1];++x1) {
		int res1 = C[tc[dep]][x1];
		for(int x2 = 0;x2 <= tc[dep] - x1 && dep*x2 <= tx[2];++x2) {
			int res2 = res1 * C[tc[dep]-x1][x2];
			for(int x3 = 0;x3 <= tc[dep]-x1-x2 && dep*x3 <= tx[3];++x3) {
				int res3 = res2 * C[tc[dep]-x1-x2][x3];
				for(int x4 = 0;x4 <= tc[dep]-x1-x2-x3 && dep*x4 <= tx[4];++x4) {
					int res4 = res3 * C[tc[dep]-x1-x2-x3][x4];
					for(int x5 = 0;x5 <= tc[dep]-x1-x2-x3-x4 && dep*x5 <= tx[5];++x5) {
						int res5 = res4 * C[tc[dep]-x1-x2-x3-x4][x5];
						int x6 = tc[dep]-x1-x2-x3-x4-x5;
						//pr(x1);pr(x2);pr(x3);pr(x4);pr(x5);pr(x6);
						if(dep*x6 <= tx[6]) {
							x[1] = tx[1] - dep*x1;x[2] = tx[2] - dep*x2;
							x[3] = tx[3] - dep*x3;x[4] = tx[4] - dep*x4;
							x[5] = tx[5] - dep*x5;x[6] = tx[6] - dep*x6;
							dfs(dep+1,res5*mul);
						}
					}
				}
			}
		}
	}
}

int main() {
	init();
	std::ios::sync_with_stdio(false);
	std::cin >> T;
	while(T--) {
		memset(ox,0,sizeof(ox));
		rep(i,1,12) {
			int tmp;
			std::cin >> tmp;
			ox[tmp] ++;
		}
		int res = 0;
		
		rep(i,1,6) x[i] = ox[i];
		ans = 0;
		tc[1] = 12,tc[2] = tc[3] = tc[4] = 0;
		dfs(1,1);
		res += ans;
		
		rep(i,1,6) x[i] = ox[i];
		ans = 0;
		tc[1] = tc[2] = tc[3] = 0,tc[4] = 3;
		dfs(1,1);
		res += 6*ans;

		rep(i,1,6) x[i] = ox[i];
		ans = 0;
		tc[1] = tc[3] = tc[4] = 0,tc[2] = 6;
		dfs(1,1);
		res += 3*ans;

		rep(i,1,6) x[i] = ox[i];
		ans = 0;
		tc[1] = tc[2] = tc[4] = 0,tc[3] = 4;
		dfs(1,1);
		res += 8*ans;

		rep(i,1,6) x[i] = ox[i];
		ans = 0;
		tc[1] = 2,tc[2] = 5,tc[3] = tc[4] = 0;
		dfs(1,1);
		res += 6*ans;
		std::cout << res/24 << std::endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值