cannot import name rgb2gray

本文介绍了一种在使用卷积神经网络(CNN)进行花卉分类时遇到的问题——缺少rgb2gray函数,并提供了简单有效的解决方案:通过安装opencv_python包来引入所需的rgb2gray函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在跑CNN进行花卉的分类的代码时候出现的,缺少 rgb2gray,这个是在opencv库里面的

解决方法 pip install opencv_python 即可!

import cv2 import numpy as np import torch import argparse from pathlib import Path from yolov5.models.experimental import attempt_load from yolov5.utils.general import non_max_suppression def detect_crosswalk(image): """检测斑马线区域并返回中心线x坐标""" hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) lower_white = np.array([0, 0, 200]) upper_white = np.array([180, 30, 255]) mask = cv2.inRange(hsv, lower_white, upper_white) kernel = np.ones((10, 10), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2) cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours = cnts[0] if len(cnts) == 2 else cnts[1] max_area = 0 crosswalk_rect = None for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) aspect_ratio = w / h area = w * h if aspect_ratio > 2 and area > 5000: if area > max_area: max_area = area crosswalk_rect = (x, y, w, h) # 存储完整坐标信息 # 修正后的返回逻辑 if crosswalk_rect: x, _, w, _ = crosswalk_rect # 从存储的元组中解包 return x + w // 2 else: return image.shape[1] // 2 def process_frame(frame, model, device): """处理单帧的核心逻辑""" # YOLOv5检测 img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img_tensor = torch.from_numpy(img_rgb).permute(2, 0, 1).float().div(255) img_tensor = img_tensor.unsqueeze(0).to(device) with torch.no_grad(): pred = model(img_tensor)[0] pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45) # 斑马线检测 center_x = detect_crosswalk(frame) cv2.line(frame, (center_x, 0), (center_x, frame.shape[0]), (0, 255, 255), 2) # 处理检测结果 if pred and pred[0] is not None: for det in pred[0]: x1, y1, x2, y2, conf, cls = det.cpu().numpy() if int(cls) not in [0, 2, 5, 7]: continue x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) obj_center = (x1 + x2) // 2 position = "左侧" if obj_center < center_x else "右侧" color = (0, 255, 0) if position == "左侧" else (0, 0, 255) cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2) cv2.putText(frame, f'{position}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) return frame def main(input_path='test.jpg'): # 设备初始化 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 加载模型 model_path = Path('yolov5s.pt') if not model_path.exists(): raise FileNotFoundError(f"Model file {model_path} not found") model = attempt_load(model_path).to(device) # 视频处理模式 if input_path.isdigit() or Path(input_path).suffix in ['.mp4', '.avi']: cap = cv2.VideoCapture(int(input_path) if input_path.isdigit() else input_path) while cap.isOpened(): ret, frame = cap.read() if not ret: break processed = process_frame(frame, model, device) cv2.imshow('Detection', processed) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() # 图片处理模式 else: frame = cv2.imread(input_path) if frame is None: raise ValueError(f"Cannot read image from {input_path}") processed = process_frame(frame, model, device) cv2.imshow('Result', processed) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, default='test.jpg', help='输入路径 (图片/视频/摄像头ID)') args = parser.parse_args() main(args.input) 以上是我写的一段代码,请你分析这段代码有什么作用并进行改进
03-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值