
1、引言
什么是聚类?我们通常说,机器学习任务可以分为两类,一类是监督学习,一类是无监督学习。监督学习:训练集有明确标签,监督学习就是寻找问题(又称输入、特征、自变量)与标签(又称输出、目标、因变量)之间关系的学习方式。监督学习模型又可以分为两类,分类和回归。
分类模型:目标变量是离散的分类型变量;回归模型:目标变量是连续性数值型变量。无监督学习:只有数据,无标签,即训练集没有标注目标变量。常见的无监督学习算法有聚类,由计算机自己找出规律,把有相似属性的样本放在一组,每个小组也称为簇。
简单来说,聚类是指根据相似数据点的属性或特征将它们分组在一起。
例如,如果我们有一组人的收入和支出,我们可以将他们分为以下几类:
- 高收入,高消费
- 高收入,低消费
- 低收入,低消费
- 低收入,高消费
2、K-means聚类
聚类算法有很多,最流行的聚类算法之一是 k-means。让我们了解 k-means 算法是如何工作的,以及该算法可能达不到预期的情况。
K-means有一个很著名很清晰的解析,就是牧师-村民模型。
有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的居民,于是每个居民到离自己家最近的布道点去听课。听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的居民的地址,搬到了所有地址的中心地带,并且在海报上更新了自己的布道点的位置。牧师每一次移动不可能离所有人都更近,有的人发现A牧师移动以后自己还不如去B牧师处听课更近,于是每个居民又去了离自己最近的布道点……就这样,