机器视觉相比智慧生物视觉的区别

当前机器视觉系统存在诸多局限,如功能单一、专业性强、与环境高度相关且缺乏三维实时感知能力。此外,现有图像识别技术仍依赖于特定场景和数据集,难以实现真正意义上的视觉理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器视觉就像高等智慧生物的眼睛一样,能够快速、直观地获得外界空间的各类视觉信息,实现所见即所得。机器无法像人类一样观察周围的世界,是因为缺乏一双与人一样的眼睛,机器可以在某些单项能力方面远远超过人类,但综合起来却与人类又有很大的差别。
机器视觉

   1.现有视觉系统功能的单一性。以智能交通系统为例:抓拍车号的相机只能拍车号,不能测速,不能自动辨别车型,而且必须在固定位置,必须有外部辅助光源和拍照触发和启动传感装置;对于闯红灯和超速的车辆检测和识别,必须要另行配置相机完成。

  2.现有视觉系统的专业局限性和复杂性。现有的机器视觉系统,都需要有专业技术人员进行专门的编程和系统设计。一个功能对应一套软件和一套专门的系统,这样的系统一般都对应着高昂的价格和高级的人才,无法为普通用户所掌握。
  3.现有视觉系统与被摄物和环境的强相关性。不同的被摄物,不同的功能要求,需要不同的软件,同时系统需要配备专用的相机、专用的镜头、专用的辅助流水线和专用的辅助灯光和对背景进行特定设置等等。只要被摄物发生任何改变,例如:规格、大小、型号、摆放位置、标签等发生改变,都必须对程序进行修改和重新设计。
  4.现有视觉系统一般都是基于二维图像的视觉感知,基本不具备三维实时感知能力。对于三维感知,目前一般采用激光扫描或双目加结构光的方式,这些方式有时还需要提前标定,还需要完成长时间的三维建模运算,有时还要固定应用场景或提前对被视物建模,另外,大部分需要一些人工干预以及延时和后期处理。
  5.现有的图像识别采用的机器学习方法,对于图像的理解,一般针对特定图像类别和固定的应用场景,还不具有智能生物的真正意义上的视觉感知和视觉理解能力。而且,智能生物对于外部空间和物体是依靠三维感觉而形成,目前的图像机器学习算法,一般都是基于二维图像数据,在对空间的感知和理解能力来说,具有先天的缺陷和弱点。
  这些不足和问题,不仅局限了机器视觉的应用范围,还让已有的技术应用复杂而困难。“我们之前所做的铁路车辆在线测量就是这样,复杂而又辛苦”,作为一个技术研发人员,希望通过技术改变些什么。纵观现有的机器视觉应用和技术,目前通用的“机器视觉”多数是由人工智能计算来实现的,一种视觉对应一种特有的软件和系统,完成一种固定的视觉任务,在算法和数据层面无法实现各视觉系统在机器视觉上的统一。而且,对于图像内容的理解方面,由于神经网络存在的黑箱性质,机器无法达到令人信服的对视觉的理解要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值