POJ 3292, Semi-prime H-numbers

本文探讨了一种特殊的数论问题,即H数及其H-semi-primes的概念。H数定义为正整数中比四的倍数大一的数,如1,5,9等。H-semi-primes是指由两个H素数相乘得到的H数。文章通过编程实现了一个算法,用于计算指定范围内H-semi-primes的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit: 1000MS  Memory Limit: 65536K
Total Submissions: 4166  Accepted: 1652


Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

 

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

 

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

 

Sample Input
21
85
789
0

 

Sample Output
21 0
85 5
789 62

 

Source
Waterloo Local Contest, 2006.9.30


// POJ3292.cpp : Defines the entry point for the console application.
//

#include 
<iostream>
#include 
<cmath>
using namespace std;

int main(int argc, char* argv[])
{
    unsigned 
long long const SIZE = 1000005;
    unsigned 
long long MAX = unsigned long (sqrt(SIZE*1.0));
    
int H[SIZE];
    memset(H, 
0sizeof(H));
    unsigned 
long long num;
    
for (unsigned long long i = 5; i < MAX; i+=4)
    {
        
for(unsigned long long j = i; (num = i * j )< SIZE; j+=4)
        {
            
if (H[i] != 0 || H[j] != 0
                H[num] 
= -1;
            
else if (H[num]!=-1)
                H[num] 
= 1;
        }
    }

    
for (int i = 1; i < SIZE; ++i) 
    {
        
if (H[i] == 1) H[i] = H[i-1+ 1;
        
else H[i] = H[i-1];
    }

    
int N;
    
while(scanf("%d"&N)!=EOF && N!=0)
        cout 
<< N << " " << H[N] << endl;

    
return 0;
}


转载于:https://www.cnblogs.com/asuran/archive/2009/10/22/1587802.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值