The Jensen Inequality

本文探讨了具有正二阶导数的凸函数,并通过不等式解释了函数值与其加权平均之间的关系。文中利用具体例子x²进行了图解说明,并推广到更多数值的加权平均情况。

Let(设) f be a function with a positive second derivative(二阶导数). Such a function is called “convex"(凸的,注意是向下凸,向上凹,如 x2 ) and satisfies the inequality  

  \begin{displaymath} {f(a)\ +\ f(b)\over 2}\ -\ f\left( {a + b\over 2}\right)\quad \geq \quad 0\end{displaymath}                      (1)

inequation (1) relates a function of an average to an average of the function. The average can be weighted, for example,  

  \begin{displaymath} { \frac{1}{3} \, f(a)\ +\   \frac{2}{3} \, f(b)}\ -\ f\left( {  \frac{1}{3} a +  \frac{2}{3} b}\right) \quad \geq \quad 0\end{displaymath}            (2)

Figure 1 is a graphical interpretation of inequation (2) for the function f=x2

jen

There is nothing special about f=x2, except that it is convex. Given three numbers a, b, and c, the inequality (2) can first be applied to a and b, and then to c and the average of a and b. Thus, recursively, an inequality like (2) can be built for a   weighted average(加权平均数)    of three or more numbers. Define weights $w_j \geq 0$ that are normalized(标准化) ($\textstyle {\sum_j} w_j = 1$). The general result(通式) is  

  \begin{displaymath} S(p_j) \eq \sum_{j=1}^N w_j f(p_j)\ -\ f\left(  \sum_{j=1}^N w_j p_j \right) \quad \geq \quad 0\end{displaymath}    (3)

If all the pj are the same, then both of the two terms in S are the same, and S vanishes. Hence, minimizing S is like urging all the pj to be identical(完全一样). Equilibrium is when S is reduced to the smallest possible value which satisfies any constraints that may be applicable. The function S defined by (3) is like the entropy(熵) defined in thermodynamics(热力学).

转载于:https://www.cnblogs.com/kevinGaoblog/archive/2012/03/30/2425986.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值