给定k个整数的序列{N1,N2,...,Nk },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= k。最大连续子序列是所有连续子序中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{11,-4,13},最大连续子序列和即为20。
算法四:动态规划法
时间复杂度:O(N)
终于到了动态规划的部分了,这么一步一步走来,感受到了算法的无穷魅力。那么如何用动态规划来处理这个问题?
首先,我们重温将一个问题用动态规划方法处理的准则:
“最优子结构”、“子问题重叠”、“边界”和“子问题独立”。
在本问题中,我们可以将子序列与其子子序列进行问题分割。
最后得到的状态转移方程为:
MaxSum[i] = Max{ MaxSum[i-1] + A[i], A[i]};
在这里,我们不必设置数组MaxSum[]。
代码实现:
int MaxSubSequence(const int A[], int N) { int ThisSum,MaxSum,j; ThisSum = MaxSum =0; for(j = 0;j < N;j++) { ThisSum += A[j]; if(ThisSum > MaxSum) MaxSum = ThisSum; else if(ThisSum < 0) ThisSum = 0; } return MaxSum; }
在本代码实现中,ThisSum持续更新,同时整个过程,只对数据进行了一次扫描,一旦A[i]被读入处理,它就不再需要被记忆。(联机算法)