【leetcode】1043. Partition Array for Maximum Sum

博客给出一道数组分区求最大和的题目,即给定整数数组,将其划分为长度至多为k的连续子数组,分区后各子数组值变为其最大值,求分区后数组最大和。还给出解题思路,用dp[i][j]表示相关最大值,并给出状态转移方程,最后给出代码来源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目如下:

Given an integer array A, you partition the array into (contiguous) subarrays of length at most K.  After partitioning, each subarray has their values changed to become the maximum value of that subarray.

Return the largest sum of the given array after partitioning.

 

Example 1:

Input: A = [1,15,7,9,2,5,10], K = 3
Output: 84
Explanation: A becomes [15,15,15,9,10,10,10]

 

Note:

  1. 1 <= K <= A.length <= 500
  2. 0 <= A[i] <= 10^6

解题思路:假设dp[i][j] 表示第i个元素为第j个子数组的最后一个元素时,A[0:i]可以获得的最大值。那么有dp[i][j] = max(dp[i][j], dp[m][j-1] + max_val[m+1][i] * (i-m))   ( i-k < m < i) 。

代码如下:

class Solution(object):
    def maxSumAfterPartitioning(self, A, K):
        """
        :type A: List[int]
        :type K: int
        :rtype: int
        """
        import math
        dp = []
        max_val = []
        sub = int(math.ceil(float(len(A))/K))
        for i in A:
            dp.append([0] * sub)
            max_val.append([0]*len(A))
        for i in range(len(A)):
            max_val[i][i] = A[i]
            for j in range(i+1,len(A)):
                max_val[i][j] = max(max_val[i][j-1],A[j])
        dp[0][0] = A[0]
        for i in range(len(A)):
            for j in range(sub):
                #print i,j
                if i-K< 0:
                    dp[i][j] = max(A[0:i+1]) * (i+1)
                else:
                    for m in range(i-K,i):
                        dp[i][j] = max(dp[i][j], dp[m][j-1] + max_val[m+1][i] * (i-m))
        #print dp
        return dp[-1][-1]

 

转载于:https://www.cnblogs.com/seyjs/p/11044749.html

Yousef has an array a of size n . He wants to partition the array into one or more contiguous segments such that each element ai belongs to exactly one segment. A partition is called cool if, for every segment bj , all elements in bj also appear in bj+1 (if it exists). That is, every element in a segment must also be present in the segment following it. For example, if a=[1,2,2,3,1,5] , a cool partition Yousef can make is b1=[1,2] , b2=[2,3,1,5] . This is a cool partition because every element in b1 (which are 1 and 2 ) also appears in b2 . In contrast, b1=[1,2,2] , b2=[3,1,5] is not a cool partition, since 2 appears in b1 but not in b2 . Note that after partitioning the array, you do not change the order of the segments. Also, note that if an element appears several times in some segment bj , it only needs to appear at least once in bj+1 . Your task is to help Yousef by finding the maximum number of segments that make a cool partition. Input The first line of the input contains integer t (1≤t≤104 ) — the number of test cases. The first line of each test case contains an integer n (1≤n≤2⋅105 ) — the size of the array. The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n ) — the elements of the array. It is guaranteed that the sum of n over all test cases doesn't exceed 2⋅105 . Output For each test case, print one integer — the maximum number of segments that make a cool partition. Example InputCopy 8 6 1 2 2 3 1 5 8 1 2 1 3 2 1 3 2 5 5 4 3 2 1 10 5 8 7 5 8 5 7 8 10 9 3 1 2 2 9 3 3 1 4 3 2 4 1 2 6 4 5 4 5 6 4 8 1 2 1 2 1 2 1 2 OutputCopy 2 3 1 3 1 3 3 4 Note The first test case is explained in the statement. We can partition it into b1=[1,2] , b2=[2,3,1,5] . It can be shown there is no other partition with more segments. In the second test case, we can partition the array into b1=[1,2] , b2=[1,3,2] , b3=[1,3,2] . The maximum number of segments is 3 . In the third test case, the only partition we can make is b1=[5,4,3,2,1]
最新发布
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值