P2858 [USACO06FEB]奶牛零食Treats for the Cows

本文介绍了一个有趣的问题:如何通过合理安排零食的售卖顺序,使得总收益最大化。问题中考虑了零食的价值随时间增长的特点,通过动态规划算法给出了求解方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.Like fine wines and delicious cheeses, the treats improve with age and command greater prices.The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每

天可以从盒子的任一端取出最外面的一个.

•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.

•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).

•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.

Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

输入输出格式

输入格式:

 

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

 

输出格式:

 

Line 1: The maximum revenue FJ can achieve by selling the treats

 

输入输出样例

输入样例#1:
5
1
3
1
5
2
输出样例#1:
43

说明

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

 

 

用dp[i][j]表示左边取到i,右边取到j的最大值

那么即将要取的第k次就是n-(j-i)

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<queue>
 6 using namespace std;
 7 const int MAXN=6001;
 8 void read(int &n)
 9 {
10     char c='+';int x=0;bool flag=0;
11     while(c<'0'||c>'9')
12     {c=getchar();if(c=='-')flag=1;}
13     while(c>='0'&&c<='9')
14     {x=x*10+(c-48);c=getchar();}
15     flag==1?n=-x:n=x;
16 }
17 int n;
18 int dp[2001][2001];
19 int a[2001];
20 int main()
21 {
22     read(n);
23     for(int i=1;i<=n;i++)
24         read(a[i]);
25     for(int i=n;i>=1;i--)
26         for(int j=i;j<=n;j++)
27             dp[i][j]=max(dp[i+1][j]+a[i]*(n-j+i),dp[i][j-1]+a[j]*(n-j+i));
28     printf("%d",dp[1][n]);
29     return 0;
30 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值