CF607B: Zuma(区间dp)

本文介绍了一种解决Zuma游戏问题的方法,目标是最小化删除所有宝石所需的秒数。通过使用动态规划策略,实现了一个算法来确定最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Zuma
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Genos recently installed the game Zuma on his phone. In Zuma there exists a line of n gemstones, the i-th of which has color ci. The goal of the game is to destroy all the gemstones in the line as quickly as possible.

In one second, Genos is able to choose exactly one continuous substring of colored gemstones that is a palindrome and remove it from the line. After the substring is removed, the remaining gemstones shift to form a solid line again. What is the minimum number of seconds needed to destroy the entire line?

Let us remind, that the string (or substring) is called palindrome, if it reads same backwards or forward. In our case this means the color of the first gemstone is equal to the color of the last one, the color of the second gemstone is equal to the color of the next to last and so on.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 500) — the number of gemstones.

The second line contains n space-separated integers, the i-th of which is ci (1 ≤ ci ≤ n) — the color of the i-th gemstone in a line.

Output

Print a single integer — the minimum number of seconds needed to destroy the entire line.

Examples
input
3
1 2 1
output
1
input
3
1 2 3
output
3
input
7
1 4 4 2 3 2 1
output
2
Note

In the first sample, Genos can destroy the entire line in one second.

In the second sample, Genos can only destroy one gemstone at a time, so destroying three gemstones takes three seconds.

In the third sample, to achieve the optimal time of two seconds, destroy palindrome 4 4 first and then destroy palindrome 1 2 3 2 1.


每次删除一段回文子串,把整段删除的最小次数,简单区间dp,dp[i][j] = min(dp[i][k]+dp[k+1][j], dp[i][j]),如果a[i] == a[j],判断多一次dp[i][j] = min(dp[i+1][j-1], dp[i][j])。

# include <stdio.h>
# include <string.h>
# define INF 0x3f3f3f3f
int min(int a, int b){return a<b?a:b;}
int a[501], dp[501][501];
int main()
{
    int n, i, j, k, len;
    while(~scanf("%d",&n))
    {
        for(i=0; i<=500; ++i)
            for(j=0; j<=500; ++j)
            dp[i][j] = INF;
        for(i=0; i<n; ++i)
        {
            scanf("%d",&a[i]);
            dp[i][i] = 1;//第一次初始化
        }
        for(i=0; i<n-1; ++i)//第二次初始化
            if(a[i]==a[i+1])
                dp[i][i+1] = 1;
            else
                dp[i][i+1] = 2;
        for(len=2; len<n; ++len)
        {
            for(i=0; i+len<n; ++i)
            {
                if(a[i]==a[i+len])
                    dp[i][i+len] = dp[i+1][i+len-1];
                for(k=i; k<i+len; ++k)
                    dp[i][i+len] = min(dp[i][k]+dp[k+1][i+len], dp[i][i+len]);
            }
        }
        printf("%d\n",dp[0][n-1]);
    }
    return 0;
}



转载于:https://www.cnblogs.com/junior19/p/6730087.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值