Luogu P2490「JSOI2016」黑白棋

本文解析了Luogu P2490题目,介绍了一种将棋盘游戏转化为NimK游戏的方法,利用DP算法求解必胜状态的方案数。详细解释了如何通过考虑棋子对作为石子堆,将问题简化为在限制条件下取石子的游戏,给出了具体的代码实现。

我博弈基础好差..

Luogu P2490


题意

有一个长度为$ n$的棋盘,黑白相间的放$ k$个棋子,保证$ k$是偶数且最左边为白子

每次小$ A$可以移动不超过$ d$个白子,然后小$ B$可以移动不超过$ d$个黑子

双方不能把棋子越过其他棋子

求有多少种初始方案使得小$ A$先手必胜

注意白子只能往右黑子只能往左


$NimK游戏$

对于一个局面,我们可以把每对相邻的(白,黑)对看成一堆石子,数量即为这两个棋子之间的距离

问题等价于每次可以在不超过$ d$堆中取石子求是否必胜

考虑普通的$ Nim$游戏相当于$ d=1$的情况,必败态为每堆的异或值为$ 0$

推广到$ d>1$的情况就是二进制下每一位在所有石子堆中的出现次数均是$d+1$的倍数则必败

这就是$NimK$游戏


$ Solution$

$ DP$

设$ f_{i,j}$表示只考虑二进制前$i$位,由$ j$颗石子组成的必败态的方案数

$ f_{i+1,j+s2^{i+1}(d+1)}+=f_{i,j}*\binom{k/2}{s(d+1)}$  

意义是选出若干堆在这一位上有$ 1$且乘上选这些堆的方案数

注意最后需要

$ f_{i,j}*=\binom{n-k/2-i}{k/2}$

其意义是给这些堆石子在原棋盘上定位

然后就做完了


 

$ my \ code$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define p 1000000007
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
    ll x = 0; char zf = 1; char ch = getchar();
    while (ch != '-' && !isdigit(ch)) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar();
    while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * zf;
}
void write(ll y){if(y<0)putchar('-'),y=-y;if(y>9)write(y/10);putchar(y%10+48);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt;
int f[15][40010];
int C[10010][205];
int main(){
    C[0][0]=1;
    n=read();k=read();int d=read();
    for(rt i=1;i<=n;i++){
        C[i][0]=1;
        for(rt j=1;j<=i&&j<=k;j++)
        C[i][j]=(C[i-1][j]+C[i-1][j-1])%p;
    }
    
    for(rt i=0;i*(d+1)<=k/2;i++)
    f[0][i*(d+1)]=C[k/2][i*(d+1)];
    for(rt i=0;i<=13;i++)
    for(rt j=0;j<=n;j++){
        for(rt s=0;s<=k&&j+(1<<i+1)*s<=n;s+=d+1)
        (f[i+1][j+(1<<i+1)*s]+=1ll*f[i][j]*C[k/2][s]%p)%=p;
    }
    int ans=C[n][k];
    for(rt i=0;n-k/2-i>=0;i++)
    f[13][i]=1ll*f[13][i]*C[n-k/2-i][k/2]%p,(ans-=f[13][i])%=p;
    cout<<(ans+p)%p;
    return 0;
}

 

转载于:https://www.cnblogs.com/DreamlessDreams/p/10069074.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值